Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

What role does containerization play in data observability?
Containerization enhances data observability by enabling consistent and isolated environments, which simplifies telemetry instrumentation and anomaly detection. It also supports better root cause analysis when issues arise in distributed systems or microservices architectures.
How does Sifflet help with root cause analysis and incident resolution?
Sifflet provides advanced root cause analysis through complete data lineage and AI-powered anomaly detection. This means teams can quickly trace issues across pipelines and transformations, assess business impact, and resolve incidents faster with smart, context-aware alerts.
What does 'agentic observability' mean and why does it matter?
Agentic observability is our vision for the future — where observability platforms don’t just monitor, they act. Think of it as moving from real-time alerts to intelligent copilots. With features like auto-remediation, dynamic thresholding, and incident response automation, Sifflet is building systems that can detect issues, assess impact, and even resolve known problems on their own. It’s a huge step toward self-healing pipelines and truly proactive data operations.
Is there a data observability platform that supports both business and technical users?
Yes, Sifflet is designed to be accessible for both business stakeholders and data engineers. It offers intuitive interfaces for no-code monitor creation, context-rich alerts, and field-level data lineage tracking. This democratizes data quality monitoring and helps teams across the organization stay aligned on data health and pipeline performance.
What should I look for in a reverse ETL tool?
When choosing a reverse ETL tool, key features to consider include reliable syncing, strong security and privacy controls, and broad integration capabilities. These features help ensure smooth data pipeline monitoring and support data governance across your organization.
How did implementing a data observability platform impact Hypebeast’s operations?
After adopting Sifflet’s observability platform, Hypebeast saw a 204% improvement in data quality, a 178% increase in data product delivery, and a 75% boost in ad hoc request speed. These gains translated into faster, more reliable insights and better collaboration across departments.
How did Carrefour improve data reliability across its global operations?
Carrefour enhanced data reliability by adopting Sifflet's AI-augmented data observability platform. This allowed them to implement over 3,000 automated data quality checks and monitor more than 1,000 core business tables, ensuring consistent and trustworthy data across teams.
How does Sifflet use AI to improve data classification?
Sifflet leverages machine learning to provide AI Suggestions for classification tags, helping teams automatically identify and label key data characteristics like PII or low cardinality. This not only streamlines data management but also enhances data quality monitoring by reducing manual effort and human error.
Still have questions?