Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

How can Sifflet help ensure SLA compliance and prevent bad data from affecting business decisions?
Sifflet helps teams stay on top of SLA compliance with proactive data freshness checks, anomaly detection, and incident tracking. Business users can rely on health indicators and lineage views to verify data quality before making decisions, reducing the risk of costly errors due to unreliable data.
How does Sifflet's integration with dbt Core improve data observability?
Great question! By integrating with dbt Core, Sifflet enhances data observability across your entire data stack. It helps you monitor dbt test coverage, map tests to downstream dependencies using data lineage tracking, and consolidate metadata like tags and descriptions, all in one place.
How do classification tags support real-time metrics and alerting?
Classification tags help define the structure and importance of your data, which in turn makes it easier to configure real-time metrics and alerts. For example, tagging a 'country' field as low cardinality allows teams to monitor sales data by region, enabling faster anomaly detection and more actionable real-time alerts.
How does reverse ETL fit into the modern data stack?
Reverse ETL is a game-changer for operational analytics. It moves data from your warehouse back into business tools like CRMs or marketing platforms. This enables teams across the organization to act on insights directly from the data warehouse. It’s a perfect example of how data integration has evolved to support autonomy and real-time metrics in decision-making.
Why does great design matter in data observability platforms?
Great design is essential in data observability platforms because it helps users navigate complex workflows with ease and confidence. At Sifflet, we believe that combining intuitive UX with a visually consistent UI empowers Data Engineers and Analysts to monitor data quality, detect anomalies, and ensure SLA compliance more efficiently.
How does MCP support data quality monitoring in modern observability platforms?
MCP helps LLMs become active participants in data quality monitoring by giving them access to structured resources like schema definitions, data validation rules, and profiling metrics. At Sifflet, we use this to detect anomalies, enforce data contracts, and ensure SLA compliance more effectively.
Why is a data catalog essential for modern data teams?
A data catalog is critical because it helps teams find, understand, and trust their data. It centralizes metadata, making data assets searchable and understandable, which reduces duplication, speeds up analytics, and supports data governance. When paired with data observability tools, it becomes a powerful foundation for proactive data management.
How does Sifflet support enterprises with data pipeline monitoring?
Sifflet provides a comprehensive observability platform that monitors the health of data pipelines through features like pipeline error alerting, data freshness checks, and ingestion latency tracking. This helps teams identify issues early and maintain SLA compliance across their data workflows.
Still have questions?