Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

Can Sifflet detect anomalies in my data pipelines?
Yes, it can! Sifflet uses machine learning for anomaly detection, helping you catch unexpected changes in data volume or quality. You can even label anomalies to improve the model's accuracy over time, reducing alert fatigue and improving incident response automation.
How does Sifflet help with compliance monitoring and audit logging?
Sifflet is ISO 27001 certified and SOC 2 compliant, and we use a separate secret manager to handle credentials securely. This setup ensures a strong audit trail and tight access control, making compliance monitoring and audit logging seamless for your data teams.
Can observability platforms help AI systems make better decisions with data?
Absolutely. AI systems need more than just schemas—they need context. Observability platforms like Sifflet provide machine-readable trust signals, data freshness checks, and reliability scores through APIs. This allows autonomous agents to assess data quality in real time and make smarter decisions without relying on outdated documentation.
What are some key benefits of using an observability platform like Sifflet?
Using an observability platform like Sifflet brings several benefits: real-time anomaly detection, proactive incident management, improved SLA compliance, and better data governance. By combining metrics, metadata, and lineage, we help teams move from reactive data quality monitoring to proactive, scalable observability that supports reliable, data-driven decisions.
Is Sifflet easy to integrate into our existing data workflows?
Yes, it’s designed to fit right in. Sifflet connects to your existing data stack via APIs and supports integrations with tools like Slack, Jira, and Microsoft Teams. It also enables 'Quality-as-Code' for teams using infrastructure-as-code, making it a seamless addition to your DataOps best practices.
Why is data lineage tracking considered a core pillar of data observability?
Data lineage tracking lets you trace data across its entire lifecycle, from source to dashboard. This visibility is essential for root cause analysis, especially when something breaks. It helps teams move from reactive firefighting to proactive prevention, which is a huge win for maintaining data reliability and meeting SLA compliance standards.
What role does machine learning play in data quality monitoring at Sifflet?
Machine learning is at the heart of our data quality monitoring efforts. We've developed models that can detect anomalies, data drift, and schema changes across pipelines. This allows teams to proactively address issues before they impact downstream processes or SLA compliance.
How does data observability support AI and machine learning initiatives?
AI models are only as good as the data they’re trained on. With data observability, you can ensure data quality, detect data drift, and enforce validation rules, all of which are critical for reliable AI outcomes. Sifflet helps you maintain trust in your data so you can confidently scale your ML and predictive analytics efforts.
Still have questions?