Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

What role does reverse ETL play in operational analytics?
Reverse ETL bridges the gap between data teams and business users by moving data from the warehouse into tools like CRMs and marketing platforms. This enables operational analytics, where business teams can act on real-time data. To ensure this process runs smoothly, data observability dashboards can monitor for pipeline errors and enforce data validation rules.
How has AI changed the way companies think about data quality monitoring?
AI has definitely raised the stakes. As Salma shared on the Joe Reis Show, executives are being asked to 'do AI,' but many still struggle with broken pipelines. That’s why data quality monitoring and robust data observability are now seen as prerequisites for scaling AI initiatives effectively.
What does Sifflet's recent $12.8M Series A funding mean for the future of data observability?
Great question! This funding round, led by EQT Ventures, allows us to double down on our mission to make data more reliable and trustworthy. With this investment, we're expanding our data observability platform, enhancing real-time monitoring capabilities, and growing our presence in EMEA and the US.
What is the MCP Server and how does it help with data observability?
The MCP (Model Context Protocol) Server is a new interface that lets you interact with Sifflet directly from your development environment. It's designed to make data observability more seamless by allowing you to query assets, review incidents, and trace data lineage without leaving your IDE or notebook. This helps streamline your workflow and gives you real-time visibility into pipeline health and data quality.
How do modern storage platforms like Snowflake and S3 support observability tools?
Modern platforms like Snowflake and Amazon S3 expose rich metadata and access patterns that observability tools can monitor. For example, Sifflet integrates with Snowflake to track schema changes, data freshness, and query patterns, while S3 integration enables us to monitor ingestion latency and file structure changes. These capabilities are key for real-time metrics and data quality monitoring.
What is the difference between data monitoring and data observability?
Great question! Data monitoring is like your car's dashboard—it alerts you when something goes wrong, like a failed pipeline or a missing dataset. Data observability, on the other hand, is like being the driver. It gives you a full understanding of how your data behaves, where it comes from, and how issues impact downstream systems. At Sifflet, we believe in going beyond alerts to deliver true data observability across your entire stack.
What’s the main difference between ETL and ELT?
Great question! While both ETL (Extract, Transform, Load) and ELT (Extract, Load, Transform) are data integration methods, the key difference lies in the order of operations. ETL transforms data before loading it into a data warehouse, whereas ELT loads raw data first and transforms it inside the warehouse. ELT has become more popular with the rise of cloud data warehouses like Snowflake and BigQuery, which offer scalable storage and computing power. If you're working with large volumes of data, ELT might be the better fit for your data pipeline monitoring strategy.
Why is aligning data initiatives with business objectives important for Etam?
At Etam, every data project begins with the question, 'How does this help us reach our OKRs?' This alignment ensures that data initiatives are directly tied to business impact, improving sponsorship and fostering collaboration across departments. It's a great example of business-aligned data strategy in action.
Still have questions?