


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
Why is data lineage tracking essential for modern data teams?
Data lineage tracking is key to understanding how data flows through your systems. It helps teams trace anomalies back to their source, identify downstream dependencies, and improve collaboration across departments. This visibility is crucial for maintaining data pipeline monitoring and SLA compliance.
What benefits did jobvalley experience from using Sifflet’s data observability platform?
By using Sifflet’s data observability platform, jobvalley improved data reliability, streamlined data discovery, and enhanced collaboration across teams. These improvements supported better decision-making and helped the company maintain a strong competitive edge in the HR tech space.
Can I customize how alerts are routed to ServiceNow from Sifflet?
Absolutely! You can customize routing based on alert metadata like domain, severity, or affected system. This ensures the right team gets notified without any manual triage, making your data pipeline monitoring more actionable and reliable.
How does Sifflet ensure data security within its data observability platform?
At Sifflet, data security is built into the foundation of our data observability platform. We follow three core principles: least privilege, no storage, and single tenancy. This means we only use read-only access, never store your data, and isolate each customer’s environment to prevent cross-tenant access.
How has the shift from ETL to ELT improved performance?
The move from ETL to ELT has been all about speed and flexibility. By loading raw data directly into cloud data warehouses before transforming it, teams can take advantage of powerful in-warehouse compute. This not only reduces ingestion latency but also supports more scalable and cost-effective analytics workflows. It’s a big win for modern data teams focused on performance and throughput metrics.
How does Sifflet support data quality monitoring?
Sifflet makes data quality monitoring seamless with its auto-coverage feature. It automatically suggests fields to monitor and applies rules for freshness, uniqueness, and null values. This proactive monitoring helps maintain SLA compliance and keeps your data assets trustworthy and safe to use.
What kinds of metrics can retailers track with advanced observability tools?
Retailers can track a wide range of metrics such as inventory health, stock obsolescence risks, carrying costs, and dynamic safety stock levels. These observability dashboards offer time-series analysis and predictive insights that support better decision-making and improve overall data reliability.
How do JOIN strategies affect query execution and data observability?
JOINs can be very resource-intensive if not used correctly. Choosing the right JOIN type and placing conditions in the ON clause helps reduce unnecessary data processing, which is key for effective data observability and real-time metrics tracking.