


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
What are some key benefits of using an observability platform like Sifflet?
Using an observability platform like Sifflet brings several benefits: real-time anomaly detection, proactive incident management, improved SLA compliance, and better data governance. By combining metrics, metadata, and lineage, we help teams move from reactive data quality monitoring to proactive, scalable observability that supports reliable, data-driven decisions.
What kind of data quality monitoring does Sifflet offer when used with dbt?
When paired with dbt, Sifflet provides robust data quality monitoring by combining dbt test insights with ML-based rules and UI-defined validations. This helps you close test coverage gaps and maintain high data quality throughout your data pipelines.
What role does data quality monitoring play in a data catalog?
Data quality monitoring ensures your data is accurate, complete, and consistent. A good data catalog should include profiling and validation tools that help teams assess data quality, which is crucial for maintaining SLA compliance and enabling proactive monitoring.
How does Sifflet enhance Apache Airflow for data teams?
Sifflet's integration with Apache Airflow brings powerful data observability features directly into your orchestration workflows. It helps data teams monitor DAG run statuses, understand downstream dependencies, and apply data quality monitoring to catch issues early, ensuring data reliability across the stack.
What should I consider when choosing a data observability tool?
When selecting a data observability tool, consider your data stack, team size, and specific needs like anomaly detection, metrics collection, or schema registry integration. Whether you're looking for open source observability options or a full-featured commercial platform, make sure it supports your ecosystem and scales with your data operations.
What’s new in Sifflet’s data quality monitoring capabilities?
We’ve rolled out several powerful updates to help you monitor data quality more effectively. One highlight is our new referential integrity monitor, which ensures logical consistency between tables, like verifying that every order has a valid customer ID. We’ve also enhanced our Data Quality as Code framework, making it easier to scale monitor creation with templates and for-loops.
What can I expect from Sifflet’s upcoming webinar?
Join us on January 22nd for a deep dive into Sifflet’s 2024 highlights and a preview of what’s ahead in 2025. We’ll cover innovations in data observability, including real-time metrics, faster incident resolution, and the upcoming Sifflet AI Agent. It’s the perfect way to kick off the year with fresh insights and inspiration!
What makes Sifflet a more inclusive data observability platform compared to Monte Carlo?
Sifflet is designed for both technical and non-technical users, offering no-code monitors, natural-language setup, and cross-persona alerts. This means analysts, data scientists, and executives can all engage with data quality monitoring without needing engineering support, making it a truly inclusive observability platform.













-p-500.png)
