Snowflake
Sifflet icon

See the Whole Picture with Sifflet and Snowflake

Contextual Observability That Goes Beyond the Stack

Your Snowflake data powers decisions across your business, but when something breaks, it’s more than pipelines at risk. It’s dashboards, AI models, customer reporting, and trust. Sifflet brings business context into your observability layer so you can fix what matters, faster.

Why chose Sifflet for Snowflake?

Your Snowflake data powers decisions across teams, but when quality issues strike, it’s not just pipelines that break. It’s customer experiences, revenue reporting, AI model accuracy, and more.

That’s where Sifflet stands apart.

Sifflet brings business context into the heart of data observability, so you don’t just know what’s broken, you know what matters. Our platform weaves metadata, pipeline behavior, and usage patterns into a unified map of technical and business logic, helping your team spot, triage, and resolve issues before they become downstream disasters.

Deep Integration with Snowflake

Sifflet enhances the observability of your Snowflake stack by letting you:

Prioritize What Matters Most

Not every broken table is worth a PagerDuty alert. Sifflet identifies which anomalies impact key dashboards, SLAs, or ML models, so your team focuses where it counts.

Map Lineage with Business Logic

See how data flows across your stack, not just pipelines, but people. Sifflet combines metadata and usage patterns to show who’s using what, and why. From column to customer.

Cut Through the Noise

Sifflet delivers context-rich alerts that combine technical symptoms with business impact. Your team gets fewer false alarms, and faster resolution.

Leverage Time Travel for Smarter Detection

Historical snapshots enhance anomaly detection with temporal intelligence.

Snowflake-specific assets

Sifflet supports multiple Snowflake-specific objects, like streams and stages, for exhaustive coverage.

Usage and Snowflake metadata

Get detailed statistics about the usage of your Snowflake assets, in addition to various metadata (like tags, descriptions, and table sizes) retrieved directly from Snowflake.

Field-level lineage

Have a detailed understanding of how data flows through your platform via field-level end-to-end lineage for Snowflake.

Built for Modern Data Teams on Snowflake

  • Trusted by Snowflake-Centric Enterprises Across Europe and the U.S.
  • Native integration with Snowflake’s metadata and query engine
  • Designed for scale, trust, and business alignment

“With Sifflet, we don’t just detect anomalies in Snowflake. We understand their real-world impact, and we act before anyone downstream even notices.”
Head of Data Governance, European Retail Leader

Perfect For…

  • Data Leaders deploying Snowflake as the central nervous system of their organization
  • Analytics Teams needing reliable, self-serve dashboards and clear ownership
  • Governance & Risk Teams looking to enforce data quality, lineage, and auditability
  • AI & ML Teams training models on clean, explainable data they can trust

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

What role does metadata play in a data observability platform?
Metadata provides context about your data, such as who created it, when it was modified, and how it's classified. In a data observability platform, strong metadata management enhances data discovery, supports compliance monitoring, and ensures consistent, high-quality data across systems.
What role did data observability play in improving Meero's data reliability?
Data observability was key to Meero's success in maintaining reliable data pipelines. By using Sifflet’s observability platform, they could monitor data freshness, schema changes, and volume anomalies, ensuring their data remained trustworthy and accurate for business decision-making.
What makes Sifflet different from other data observability platforms like Monte Carlo or Anomalo?
Sifflet stands out by offering a unified observability platform that combines data cataloging, monitoring, and data lineage tracking in one place. Unlike tools that focus only on anomaly detection or technical metrics, Sifflet brings in business context, empowering both technical and non-technical users to collaborate and ensure data reliability at scale.
What makes SQL Table Tracer suitable for real-world data observability use cases?
STT is designed to be lightweight, extensible, and accurate. It supports complex SQL features like CTEs and subqueries using a composable, monoid-based design. This makes it ideal for integrating into larger observability tools, ensuring reliable data lineage tracking and SLA compliance.
What features should we look for in a data observability tool?
A great data observability tool should offer automated data quality checks like data freshness checks and schema change detection, field-level data lineage tracking for root cause analysis, and a powerful metadata search engine. These capabilities streamline incident response and help maintain data governance across your entire stack.
Why is data observability becoming essential for modern data teams?
As data pipelines grow more complex, data observability provides the visibility needed to monitor and troubleshoot issues across the full stack. By adopting a robust observability platform, teams can detect anomalies, ensure SLA compliance, and maintain data reliability without relying on manual checks or reactive fixes.
How does reverse ETL fit into the modern data stack?
Reverse ETL is a game-changer for operational analytics. It moves data from your warehouse back into business tools like CRMs or marketing platforms. This enables teams across the organization to act on insights directly from the data warehouse. It’s a perfect example of how data integration has evolved to support autonomy and real-time metrics in decision-making.
Can I define data quality monitors as code using Sifflet?
Absolutely! With Sifflet's Data-Quality-as-Code (DQaC) v2 framework, you can define and manage thousands of monitors in YAML right from your IDE. This Everything-as-Code approach boosts automation and makes data quality monitoring scalable and developer-friendly.

Want to try Sifflet on your Snowflake Stack?

Get in touch Now

I want to Try