


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
What makes Sifflet's approach to data quality unique?
At Sifflet, we believe data quality isn't one-size-fits-all. Our observability platform blends technical robustness with business context, offering customized data quality monitoring that adapts to your specific use cases. This means you get both reliable pipelines and meaningful metrics that align with your business goals.
How does Sifflet support data governance at scale?
Sifflet supports scalable data governance by letting you tag declared assets, assign owners, and classify sensitive data like PII. This ensures compliance with regulations and improves collaboration across teams using a centralized observability platform.
How does the Model Context Protocol (MCP) improve data observability with LLMs?
Great question! MCP allows large language models to access structured external context like pipeline metadata, logs, and diagnostics tools. At Sifflet, we use MCP to enhance data observability by enabling intelligent agents to monitor, diagnose, and act on issues across complex data pipelines in real time.
How does Sifflet use AI to improve data observability?
At Sifflet, we're integrating advanced AI models into our observability platform to enhance data quality monitoring and anomaly detection. Marie, our Machine Learning Engineer, has been instrumental in building intelligent systems that automatically detect issues across data pipelines, making it easier to maintain data reliability in real time.
How does Sifflet ensure a user-friendly experience for data teams?
We prioritize user research and apply UX principles like Jacob’s Law to design familiar and intuitive workflows. This helps reduce friction for users working with tools like our Sifflet Insights plugin, which brings real-time metrics and data quality monitoring directly into BI dashboards like Looker and Tableau.
Can I see how a business metric is calculated in Sifflet?
Absolutely! With Sifflet’s data lineage tracking, users can view the full column-level lineage from ingestion to consumption. This transparency helps users understand how each metric is computed and how it relates to other data or metrics in the pipeline.
What role does data lineage tracking play in AI compliance and governance?
Data lineage tracking is essential for understanding where your AI training data comes from and how it has been transformed. With Sifflet’s field-level lineage and Universal Integration API, you get full transparency across your data pipelines. This is crucial for meeting regulatory requirements like GDPR and the AI Act, and it strengthens your overall data governance strategy.
What role does data ownership play in data quality monitoring?
Clear data ownership is a game changer for data quality monitoring. When each data product has a defined owner, it’s easier to resolve issues quickly, collaborate across teams, and build a strong data culture that values accountability and trust.