Snowflake
Sifflet icon

See the Whole Picture with Sifflet and Snowflake

Contextual Observability That Goes Beyond the Stack

Your Snowflake data powers decisions across your business, but when something breaks, it’s more than pipelines at risk. It’s dashboards, AI models, customer reporting, and trust. Sifflet brings business context into your observability layer so you can fix what matters, faster.

Why chose Sifflet for Snowflake?

Your Snowflake data powers decisions across teams, but when quality issues strike, it’s not just pipelines that break. It’s customer experiences, revenue reporting, AI model accuracy, and more.

That’s where Sifflet stands apart.

Sifflet brings business context into the heart of data observability, so you don’t just know what’s broken, you know what matters. Our platform weaves metadata, pipeline behavior, and usage patterns into a unified map of technical and business logic, helping your team spot, triage, and resolve issues before they become downstream disasters.

Deep Integration with Snowflake

Sifflet enhances the observability of your Snowflake stack by letting you:

Prioritize What Matters Most

Not every broken table is worth a PagerDuty alert. Sifflet identifies which anomalies impact key dashboards, SLAs, or ML models, so your team focuses where it counts.

Map Lineage with Business Logic

See how data flows across your stack, not just pipelines, but people. Sifflet combines metadata and usage patterns to show who’s using what, and why. From column to customer.

Cut Through the Noise

Sifflet delivers context-rich alerts that combine technical symptoms with business impact. Your team gets fewer false alarms, and faster resolution.

Leverage Time Travel for Smarter Detection

Historical snapshots enhance anomaly detection with temporal intelligence.

Snowflake-specific assets

Sifflet supports multiple Snowflake-specific objects, like streams and stages, for exhaustive coverage.

Usage and Snowflake metadata

Get detailed statistics about the usage of your Snowflake assets, in addition to various metadata (like tags, descriptions, and table sizes) retrieved directly from Snowflake.

Field-level lineage

Have a detailed understanding of how data flows through your platform via field-level end-to-end lineage for Snowflake.

Built for Modern Data Teams on Snowflake

  • Trusted by Snowflake-Centric Enterprises Across Europe and the U.S.
  • Native integration with Snowflake’s metadata and query engine
  • Designed for scale, trust, and business alignment

“With Sifflet, we don’t just detect anomalies in Snowflake. We understand their real-world impact, and we act before anyone downstream even notices.”
Head of Data Governance, European Retail Leader

Perfect For…

  • Data Leaders deploying Snowflake as the central nervous system of their organization
  • Analytics Teams needing reliable, self-serve dashboards and clear ownership
  • Governance & Risk Teams looking to enforce data quality, lineage, and auditability
  • AI & ML Teams training models on clean, explainable data they can trust

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

How can Sifflet help ensure SLA compliance and prevent bad data from affecting business decisions?
Sifflet helps teams stay on top of SLA compliance with proactive data freshness checks, anomaly detection, and incident tracking. Business users can rely on health indicators and lineage views to verify data quality before making decisions, reducing the risk of costly errors due to unreliable data.
How do JOIN strategies affect query execution and data observability?
JOINs can be very resource-intensive if not used correctly. Choosing the right JOIN type and placing conditions in the ON clause helps reduce unnecessary data processing, which is key for effective data observability and real-time metrics tracking.
Why is stakeholder trust in data so important, and how can we protect it?
Stakeholder trust is crucial because inconsistent or unreliable data can lead to poor decisions and reduced adoption of data-driven practices. You can protect this trust with strong data quality monitoring, real-time metrics, and consistent reporting. Data observability tools help by alerting teams to issues before they impact dashboards or reports, ensuring transparency and reliability.
What makes Sifflet’s data lineage tracking stand out?
Sifflet offers one of the most advanced data lineage tracking capabilities out there. Think of it like a GPS for your data pipelines—it gives you full traceability, helps identify bottlenecks, and supports better pipeline orchestration visibility. It's a game-changer for data governance and optimization.
Why is data observability important during the data integration process?
Data observability is key during data integration because it helps detect issues like schema changes or broken APIs early on. Without it, bad data can flow downstream, impacting analytics and decision-making. At Sifflet, we believe observability should start at the source to ensure data reliability across the whole pipeline.
How does Sifflet’s revamped dbt integration improve data observability?
Great question! With our latest dbt integration update, we’ve unified dbt models and the datasets they generate into a single asset. This means you get richer context and better visibility across your data pipelines, making it easier to track data lineage, monitor data quality, and ensure SLA compliance all from one place.
How does Sifflet's Data Sharing feature help with enforcing data governance policies?
Great question! Sifflet's Data Sharing provides access to rich metadata about your data assets, including tags, owners, and monitor configurations. By making this available in your own data warehouse, you can set up automated checks to ensure compliance with your governance standards. It's a powerful way to implement scalable data governance and reduce manual audits using our observability platform.
What’s the difference between a data schema and a database schema?
Great question! A data schema defines structure across your entire data ecosystem, including pipelines, APIs, and ingestion tools. A database schema, on the other hand, is specific to one system, like PostgreSQL or BigQuery, and focuses on tables, columns, and relationships. Both are essential for effective data governance and observability.

Want to try Sifflet on your Snowflake Stack?

Get in touch Now

I want to Try