Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

How does Sifflet use AI to improve data observability?
At Sifflet, we're integrating advanced AI models into our observability platform to enhance data quality monitoring and anomaly detection. Marie, our Machine Learning Engineer, has been instrumental in building intelligent systems that automatically detect issues across data pipelines, making it easier to maintain data reliability in real time.
How does Sifflet help identify performance bottlenecks in dbt models?
Sifflet's dbt runs tab offers deep insights into model execution, cost, and runtime, making it easy to spot inefficiencies. You can also use historical performance data to set up custom dashboards and proactive monitors. This helps with capacity planning and ensures your data pipelines stay optimized and cost-effective.
What kind of alerts can I expect from Sifflet when using it with Firebolt?
With Sifflet, you’ll receive real-time alerts for any data quality issues detected in your Firebolt warehouse. These alerts are powered by advanced anomaly detection and data freshness checks, helping you stay ahead of potential problems.
Why is using WHERE instead of HAVING so important for performance?
Using WHERE instead of HAVING when not working with GROUP BY clauses is crucial because WHERE filters data earlier in the query execution. This reduces the amount of data processed, which improves query speed and supports better metrics collection in your observability platform.
Can Sifflet help me monitor data drift and anomalies beyond what dbt offers?
Absolutely! While dbt is fantastic for defining tests, Sifflet takes it further with advanced data drift detection and anomaly detection. Our platform uses intelligent monitoring templates that adapt to your data’s behavior, so you can spot unexpected changes like missing rows or unusual values without setting manual thresholds.
How does the rise of unstructured data impact data quality monitoring?
Unstructured data, like text, images, and audio, is growing rapidly due to AI adoption and IoT expansion. This makes data quality monitoring more complex but also more essential. Tools that can profile and validate unstructured data are key to maintaining high-quality datasets for both traditional and AI-driven applications.
What makes debugging data pipelines so time-consuming, and how can observability help?
Debugging complex pipelines without the right tools can feel like finding a needle in a haystack. A data observability platform simplifies root cause analysis by providing detailed telemetry and pipeline health dashboards, so you can quickly identify where things went wrong and fix them faster.
What is a Single Source of Truth, and why is it so hard to achieve?
A Single Source of Truth (SSOT) is a centralized repository where all organizational data is stored and accessed consistently. While it sounds ideal, achieving it is tough because different tools often measure data in unique ways, leading to multiple interpretations. Ensuring data reliability and consistency across sources is where data observability platforms like Sifflet can make a real difference.
Still have questions?