Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

What’s the first step when building a modern data team from scratch?
The very first step is to set clear objectives that align with your company’s level of data maturity and business needs. This means involving stakeholders from different departments and deciding whether your focus is on exploratory analysis, business intelligence, or innovation through AI and ML. These goals will guide your choices in data stack, platform, and hiring.
How does data observability support AI and machine learning initiatives?
AI models are only as good as the data they’re trained on. With data observability, you can ensure data quality, detect data drift, and enforce validation rules, all of which are critical for reliable AI outcomes. Sifflet helps you maintain trust in your data so you can confidently scale your ML and predictive analytics efforts.
What should a solid data quality monitoring framework include?
A strong data quality monitoring framework should be scalable, rule-based and powered by AI for anomaly detection. It should support multiple data sources and provide actionable insights, not just alerts. Tools that enable data drift detection, schema validation and real-time alerts can make a huge difference in maintaining data integrity across your pipelines.
How does Sifflet help reduce AI bias and improve model fairness?
Reducing AI bias starts with understanding your data. Sifflet’s observability platform gives you deep visibility into data sources, transformations, and quality. By tracking data lineage and applying data profiling, teams can identify and correct biased inputs before they affect model outcomes. This transparency helps build more ethical and reliable AI systems.
What role does data pipeline monitoring play in Dailymotion’s delivery optimization?
By rebuilding their pipelines with strong data pipeline monitoring, Dailymotion reduced storage costs, improved performance, and ensured consistent access to delivery data. This helped eliminate data sprawl and created a single source of truth for operational teams.
How can organizations improve data governance with modern observability tools?
Modern observability tools offer powerful features like data lineage tracking, audit logging, and schema registry integration. These capabilities help organizations improve data governance by providing transparency, enforcing data contracts, and ensuring compliance with evolving regulations like GDPR.
How do declared assets improve data quality monitoring?
Declared assets appear in your Data Catalog just like built-in assets, with full metadata and business context. This improves data quality monitoring by making it easier to track data lineage, perform data freshness checks, and ensure SLA compliance across your entire pipeline.
How does SQL Table Tracer support different SQL dialects for data lineage tracking?
SQL Table Tracer uses Antlr4 and a unified grammar with semantic predicates to support multiple SQL dialects like Snowflake, Redshift, and PostgreSQL. This ensures accurate data lineage tracking across diverse systems without needing separate parsers for each dialect.
Still have questions?