


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
How can poor data distribution impact machine learning models?
When data distribution shifts unexpectedly, it can throw off the assumptions your ML models are trained on. For example, if a new payment processor causes 70% of transactions to fall under $5, a fraud detection model might start flagging legitimate behavior as suspicious. That's why real-time metrics and anomaly detection are so crucial for ML model monitoring within a good data observability framework.
What does 'agentic observability' mean and why does it matter?
Agentic observability is our vision for the future — where observability platforms don’t just monitor, they act. Think of it as moving from real-time alerts to intelligent copilots. With features like auto-remediation, dynamic thresholding, and incident response automation, Sifflet is building systems that can detect issues, assess impact, and even resolve known problems on their own. It’s a huge step toward self-healing pipelines and truly proactive data operations.
What should I look for when choosing a data observability platform?
Great question! When evaluating a data observability platform, it’s important to focus on real capabilities like root cause analysis, data lineage tracking, and SLA compliance rather than flashy features. Our checklist helps you cut through the noise so you can find a solution that builds trust and scales with your data needs.
Is Sifflet easy to integrate into our existing data workflows?
Yes, it’s designed to fit right in. Sifflet connects to your existing data stack via APIs and supports integrations with tools like Slack, Jira, and Microsoft Teams. It also enables 'Quality-as-Code' for teams using infrastructure-as-code, making it a seamless addition to your DataOps best practices.
Who are some of the companies using Sifflet’s observability tools?
We're proud to work with amazing organizations like St-Gobain, Penguin Random House, and Euronext. These enterprises rely on Sifflet for cloud data observability, data lineage tracking, and proactive monitoring to ensure their data is always AI-ready and analytics-friendly.
Can I use data monitoring and data observability together?
Absolutely! In fact, data monitoring is often a key feature within a broader data observability solution. At Sifflet, we combine traditional monitoring with advanced capabilities like data profiling, pipeline health dashboards, and data drift detection so you get both alerts and insights in one place.
When should I consider using a point solution like Anomalo or Bigeye instead of a full observability platform?
If your team has a narrow focus on anomaly detection or prefers a SQL-first, hands-on approach to monitoring, tools like Anomalo or Bigeye can be great fits. However, for broader needs like data governance, business impact analysis, and cross-functional collaboration, a platform like Sifflet offers more comprehensive data observability.
What types of metadata are captured in a modern data catalog?
Modern data catalogs capture four key types of metadata: technical (schemas, formats), business (definitions, KPIs), operational (usage patterns, SLA compliance), and governance (access controls, data classifications). These layers work together to support data quality monitoring and transparency in data pipelines.






-p-500.png)
