


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
Why is declarative lineage important for data observability?
Declarative lineage is a game changer because it provides a clear, structured view of how data flows through your systems. This visibility is key for effective data pipeline monitoring, root cause analysis, and data governance. With Sifflet’s approach, you can track upstream and downstream dependencies and ensure your data is reliable and well-managed.
What does a modern data stack look like and why does it matter?
A modern data stack typically includes tools for ingestion, warehousing, transformation and business intelligence. For example, you might use Fivetran for ingestion, Snowflake for warehousing, dbt for transformation and Looker for analytics. Investing in the right observability tools across this stack is key to maintaining data reliability and enabling real-time metrics that support smart, data-driven decisions.
What can I expect from Sifflet at Big Data Paris 2024?
We're so excited to welcome you at Booth #D15 on October 15 and 16! You’ll get to experience live demos of our latest data observability features, hear real client stories like Saint-Gobain’s, and explore how Sifflet helps improve data reliability and streamline data pipeline monitoring.
What are some best practices Hypebeast followed for successful data observability implementation?
Hypebeast focused on phased deployment of observability tools, continuous training for all data users, and a strong emphasis on data quality monitoring. These strategies helped ensure smooth adoption and long-term success with their observability platform.
What role does data observability play in preventing freshness incidents?
Data observability gives you the visibility to detect freshness problems before they impact the business. By combining metrics like data age, expected vs. actual arrival time, and pipeline health dashboards, observability tools help teams catch delays early, trace where things broke down, and maintain trust in real-time metrics.
What’s the best way to prevent bad data from impacting our business decisions?
Preventing bad data starts with proactive data quality monitoring. That includes data profiling, defining clear KPIs, assigning ownership, and using observability tools that provide real-time metrics and alerts. Integrating data lineage tracking also helps you quickly identify where issues originate in your data pipelines.
Why is the traditional approach to data observability no longer enough?
Great question! The old playbook for data observability focused heavily on technical infrastructure and treated data like servers — if the pipeline ran and the schema looked fine, the data was assumed to be trustworthy. But today, data is a strategic asset that powers business decisions, AI models, and customer experiences. At Sifflet, we believe modern observability platforms must go beyond uptime and freshness checks to provide context-aware insights that reflect real business impact.
Why is data storage so important for data observability?
Great question! Data storage is the foundation of any data observability strategy. Without reliable storage, you can't trust the data you're monitoring or trace issues back to their source. At Sifflet, we believe observability starts with making sure your data is stored correctly, consistently, and accessibly. That way, your alerts, dashboards, and root cause analysis are built on solid ground.













-p-500.png)
