Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

What is the MCP Server and how does it help with data observability?
The MCP (Model Context Protocol) Server is a new interface that lets you interact with Sifflet directly from your development environment. It's designed to make data observability more seamless by allowing you to query assets, review incidents, and trace data lineage without leaving your IDE or notebook. This helps streamline your workflow and gives you real-time visibility into pipeline health and data quality.
How did Adaptavist reduce data downtime with Sifflet?
Adaptavist used Sifflet’s observability platform to map the blast radius of changes, alert users before issues occurred, and validate results pre-production. This proactive approach to data pipeline monitoring helped them eliminate downtime during a major refactor and shift from 'merge and pray' to a risk-aware, observability-first workflow.
What kind of alerts can I expect from Sifflet when using it with Firebolt?
With Sifflet, you’ll receive real-time alerts for any data quality issues detected in your Firebolt warehouse. These alerts are powered by advanced anomaly detection and data freshness checks, helping you stay ahead of potential problems.
How does Sifflet stand out among other data observability tools?
Sifflet takes a unique approach by addressing data reliability as both an engineering and business challenge. Our observability platform offers end-to-end coverage, business context, and a collaboration layer that aligns technical teams with strategic outcomes, making it easier to maintain analytics and AI-ready data.
How does Sifflet use AI to improve data classification?
Sifflet leverages machine learning to provide AI Suggestions for classification tags, helping teams automatically identify and label key data characteristics like PII or low cardinality. This not only streamlines data management but also enhances data quality monitoring by reducing manual effort and human error.
How does the checklist help with reducing alert fatigue?
The checklist emphasizes the need for smart alerting, like dynamic thresholding and alert correlation, instead of just flooding your team with notifications. This focus helps reduce alert fatigue and ensures your team only gets notified when it really matters.
What is metrics observability and why does it matter for business users?
Metrics observability helps business users trust and understand the KPIs they rely on by making it easy to trace how metrics are defined, calculated, and connected to other data assets. With Sifflet’s observability platform, teams can ensure their business metrics are accurate, reliable, and aligned across departments.
How does Sifflet help with anomaly detection in data pipelines?
Sifflet uses machine learning to power anomaly detection across your data ecosystem. Instead of relying on static rules, it learns your data’s patterns and flags unusual behavior—like a sudden drop in transaction volume. This helps teams catch issues early, avoid alert fatigue, and focus on incidents that actually impact business outcomes. It’s data quality monitoring with real intelligence.
Still have questions?