GALERIES LAFAYETTE

Fiabilisez vos données e-commerce avec Sifflet!

Dans un environnement omnicanal comme celui des Galeries Lafayette, la fiabilité des données e-commerce est un levier stratégique.
Entre taux de conversion, suivi des ventes, données de caisse, ou performance des campagnes, chaque point de friction dans la chaîne de données peut affecter les décisions business et l’expérience client.
Avec Sifflet, vous détectez les anomalies avant qu’elles n’impactent vos KPIs.

Pourquoi utiliser Sifflet

Equipez vos équipes data et business avec le meilleur outil possible de data observabilité

Monitoring Automatique

Surveillez en continu vos pipelines et jeux de données critiques pour détecter les anomalies avant qu'elles n'affectent vos KPIs.

Alerting Intelligent Multicanal

Recevez des alertes ciblées sur Slack, email ou autres outils, pour mobiliser les bonnes équipes au bon moment.

Gouvernance intégrée et accessible aux métiers

Offrez à vos équipes une vue claire sur la qualité, la fraîcheur et la traçabilité des données – sans dépendre des experts techniques.

CAS d'USAGE 1

Monitoring des ventes et taux de conversion

Client : We Casa
L’équipe acquisition utilise Sifflet pour surveiller en temps réel les performances du tunnel de vente.

  • En cas d’anomalie sur le taux de conversion ou sur le volume de ventes, des alertes sont envoyées automatiquement aux équipes data et marketing.

Le Résultat? Réactivité accrue, détection rapide des incidents de tracking ou bugs techniques.

Sifflet ai assistant illustration
CAS D'USAGE 2

Vérification des tickets de caisse

Client : Bonpoint
Sifflet permet de vérifier que chaque ticket de caisse émis en boutique remonte bien dans les systèmes centraux.

  • Des règles personnalisées détectent les écarts ou données manquantes.

Le résultat? Visibilité sur la santé opérationnelle de chaque magasin, fiabilité des reportings.

Sifflet troubleshoot illustration
CAS D'USAGE 3

Suivi des données tierces (Amazon, etc.)

Client : Penguin Random House
Grâce aux monitors automatisés, Penguin vérifie la fraîcheur, la complétude et la structure des données issues de ses partenaires.

  • Les jeux de données critiques (inventaire, commandes, ventes, trafic) sont sous contrôle.

Le Résultat? Moins de risques liés aux données fournisseurs, meilleure fiabilité des dashboards Power BI.

Sifflet driving illustration
CAS D'USAGE 4

Renforcement de la confiance métier

Sifflet permet aux équipes marketing, e-commerce ou finance :

  • D’identifier l’origine d’un chiffre
  • De mesurer la qualité des données utilisées
  • D’être alertées en temps réel en cas d’anomalie

Le Résultat? Moins de temps à douter des chiffres, plus de temps pour prendre des décisions.

sifflet datacatalog

Fiabilisez vos KPIs stratégiques e-commerce

Assurez la qualité de vos métriques clés : taux de conversion, ventes, paniers, inventaire… pour des reportings sans zones d’ombre.

Offrez aux équipes métier des données de confiance, en temps réel

Faites gagner en autonomie vos équipes marketing, e-commerce ou finance avec une donnée documentée, fraîche et exploitable.

Réduisez les incidents avant qu'ils n'aient un impact business

Anticipez les problèmes de données grâce à une détection proactive et évitez les mauvaises décisions ou les pertes de revenus.

On y va?

Sifflet+Galeries Lafayette, ca pourrait être la collab' du siècle, non?

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data
"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist
"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam
" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios
"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links
"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Frequently asked questions

How does MCP support data quality monitoring in modern observability platforms?
MCP helps LLMs become active participants in data quality monitoring by giving them access to structured resources like schema definitions, data validation rules, and profiling metrics. At Sifflet, we use this to detect anomalies, enforce data contracts, and ensure SLA compliance more effectively.
How does aligning data observability with business objectives improve outcomes?
Aligning data observability with business goals transforms data from a technical asset into a strategic one. By setting clear KPIs and linking data quality monitoring to business impact, teams can make smarter decisions, improve SLA compliance, and drive real value from their data investments.
Can I deploy Sifflet in my own environment for better control?
Absolutely! Sifflet offers both SaaS and self-managed deployment models. With the self-managed option, you can run the platform entirely within your own infrastructure, giving you full control and helping meet strict compliance and security requirements.
How does Sifflet support real-time data lineage and observability?
Sifflet provides automated, field-level data lineage integrated with real-time alerts and anomaly detection. It maps how data flows across your stack, enabling quick root cause analysis and impact assessments. With features like data drift detection, schema change tracking, and pipeline error alerting, Sifflet helps teams stay ahead of issues and maintain data reliability.
Is there a networking opportunity with the Sifflet team at Big Data Paris?
Yes, we’re hosting an exclusive after-party at our booth on October 15! Come join us for great conversations, a champagne toast, and a chance to connect with data leaders who care about data governance, pipeline health, and building resilient systems.
Why is data observability important during cloud migration?
Great question! Data observability helps you monitor the health and integrity of your data as it moves to the cloud. By using an observability platform, you can track data lineage, detect anomalies, and validate consistency between environments, which reduces the risk of disruptions and broken pipelines.
What’s coming next for the Sifflet AI Assistant?
We’re excited about what’s ahead. Soon, the Sifflet AI Assistant will allow non-technical users to create monitors using natural language, expand monitoring coverage automatically, and provide deeper insights into resource utilization and capacity planning to support scalable data observability.
How does Sifflet support data governance at scale?
Sifflet supports scalable data governance by letting you tag declared assets, assign owners, and classify sensitive data like PII. This ensures compliance with regulations and improves collaboration across teams using a centralized observability platform.
Still have questions?