DATA OBSERVABILITY FOR RETAIL

Maximizing Retail Performance with Data Observability

How top retailers leverage reliable data to drive omnichannel success

The Retail Data Imperative

Modern retailers are navigating an increasingly complex digital landscape—SKU-level transactions, real-time pricing, omnichannel inventory, and customer behavior insights.

Yet, unreliable data leads to blind spots with serious consequences:

The $1.77 Trillion Blind Spot

Overstocks, stockouts, and mismatched demand signal a data crisis. Retailers are losing trillions globally, not because they lack data, but because they can’t trust it. Without visibility into data health, even the most sophisticated inventory systems fail to deliver.

When Data Fails, Inventory Piles Up

Forecasting without reliable, up-to-date inputs leads to costly misfires. One error multiplies across SKUs, stores, and markets. The result? Dead stock, wasted marketing spend, and operational inefficiency on a global scale.

Too Late Is Too Costly

By the time teams notice a broken pipeline or a reporting inconsistency, revenue has already taken a hit, and so has customer trust.
Reactive tools can’t keep up with real-time commerce. What retailers need is a way to spot issues before they cascade.

Meanwhile, retail media networks (like Carrefour & Sainsbury’s) are monetizing clean, actionable data at scale. To stay competitive, retailers must turn their data into a strength.

The Solution: AI-Powered Data Observability

Sifflet empowers retail leaders to detect issues proactively, ensure data reliability, and unlock operational excellence—across every touchpoint.

USE CASE #1

Inventory & Supply Chain Optimization

The challenge: Thousands of SKUs. Multiple channels. Constant volatility.

The Sifflet edge: Real-time tracking, automated data checks, and anomaly detection help prevent stockouts and costly errors before they impact revenue.

Sifflet ai assistant illustration
USE CASE #2

Pricing & Promotions Accuracy

The challenge: Inconsistent pricing across platforms leads to lost margins and customer frustration.

The Sifflet edge: Continuous pricing validation across all systems ensures promotional integrity and customer trust.

Sifflet troubleshoot illustration
USE CASE #3

Omnichannel Customer Experience

The challenge: Data silos cause fragmented profiles and disconnected experiences.

The Sifflet edge: A unified view of customer data enables personalization and stronger loyalty programs.

Sifflet driving illustration
USE CASE #4

AI-Powered Demand Forecasting

The challenge: Outdated forecasting models miss real-world volatility.

The Sifflet edge: ML learns from historical sales, competitor pricing, and external signals to fine-tune demand planning.

sifflet datacatalog

Proactive Data Reliability at Scale

ML-powered, event-driven observability detects issues before they impact revenue, ensuring real-time reliability across thousands of pipelines, even in complex enterprise environments.

Seamless Integration Across Your Retail Stack

Sifflet connects effortlessly with your ERP, POS, CRM, e-commerce, and analytics tools, breaking down data silos and enabling a unified view across all operations.

Empowering Every Team: from Data to Business

Designed for both technical and non-technical users, Sifflet transforms raw data into clear, actionable insights, so your teams can make smarter decisions, faster.

Let’s fix the $9.7B problem before it’s yours.

Retail data shouldn’t be a liability. With Sifflet, it’s your secret weapon.
Say goodbye to guesswork: say hello to reliable insights.

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data
"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist
"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam
" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios
"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links
"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Frequently asked questions

Why is stakeholder trust in data so important, and how can we protect it?
Stakeholder trust is crucial because inconsistent or unreliable data can lead to poor decisions and reduced adoption of data-driven practices. You can protect this trust with strong data quality monitoring, real-time metrics, and consistent reporting. Data observability tools help by alerting teams to issues before they impact dashboards or reports, ensuring transparency and reliability.
How did Adaptavist reduce data downtime with Sifflet?
Adaptavist used Sifflet’s observability platform to map the blast radius of changes, alert users before issues occurred, and validate results pre-production. This proactive approach to data pipeline monitoring helped them eliminate downtime during a major refactor and shift from 'merge and pray' to a risk-aware, observability-first workflow.
How does SQL Table Tracer handle complex SQL features like CTEs and subqueries?
SQL Table Tracer uses a Monoid-based design to handle complex SQL structures like Common Table Expressions (CTEs) and subqueries. This approach allows it to incrementally and safely compose lineage information, ensuring accurate root cause analysis and data drift detection.
Why do traditional data contracts often fail in dynamic environments?
Traditional data contracts struggle because they’re static by nature, while modern data systems are constantly evolving. As AI and real-time workloads become more common, these contracts can’t keep up with schema changes, data drift, or business logic updates. That’s why many teams are turning to data observability platforms like Sifflet to bring context, real-time metrics, and trust into the equation.
What sessions is Sifflet hosting at Big Data LDN?
We’ve got an exciting lineup! Join us for talks on building trust through data observability, monitoring and tracing data assets at scale, and transforming data skepticism into collaboration. Don’t miss our session on how to unlock the power of data observability for your organization.
How does data observability improve data contract enforcement?
Data observability adds critical context that static contracts lack, such as data lineage tracking, real-time usage patterns, and anomaly detection. With observability tools, teams can proactively monitor contract compliance, detect schema drift early, and ensure SLA compliance before issues impact downstream systems. It transforms contracts from documentation into enforceable, living agreements.
How does Sifflet help reduce alert fatigue in data observability?
Sifflet uses AI-driven context and dynamic thresholding to prioritize alerts based on impact and relevance. Its intelligent alerting system ensures users only get notified when it truly matters, helping reduce alert fatigue and enabling faster, more focused incident response.
Which industries or use cases benefit most from Sifflet's observability tools?
Our observability tools are designed to support a wide range of industries, from retail and finance to tech and logistics. Whether you're monitoring streaming data in real time or ensuring data freshness in batch pipelines, Sifflet helps teams maintain high data quality and meet SLA compliance goals.
Still have questions?