DATA OBSERVABILITY FOR RETAIL

Maximizing Retail Performance with Data Observability

How top retailers leverage reliable data to drive omnichannel success

The Retail Data Imperative

Modern retailers are navigating an increasingly complex digital landscape—SKU-level transactions, real-time pricing, omnichannel inventory, and customer behavior insights.

Yet, unreliable data leads to blind spots with serious consequences:

The $1.77 Trillion Blind Spot

Overstocks, stockouts, and mismatched demand signal a data crisis. Retailers are losing trillions globally, not because they lack data, but because they can’t trust it. Without visibility into data health, even the most sophisticated inventory systems fail to deliver.

When Data Fails, Inventory Piles Up

Forecasting without reliable, up-to-date inputs leads to costly misfires. One error multiplies across SKUs, stores, and markets. The result? Dead stock, wasted marketing spend, and operational inefficiency on a global scale.

Too Late Is Too Costly

By the time teams notice a broken pipeline or a reporting inconsistency, revenue has already taken a hit, and so has customer trust.
Reactive tools can’t keep up with real-time commerce. What retailers need is a way to spot issues before they cascade.

Meanwhile, retail media networks (like Carrefour & Sainsbury’s) are monetizing clean, actionable data at scale. To stay competitive, retailers must turn their data into a strength.

The Solution: AI-Powered Data Observability

Sifflet empowers retail leaders to detect issues proactively, ensure data reliability, and unlock operational excellence—across every touchpoint.

USE CASE #1

Inventory & Supply Chain Optimization

The challenge: Thousands of SKUs. Multiple channels. Constant volatility.

The Sifflet edge: Real-time tracking, automated data checks, and anomaly detection help prevent stockouts and costly errors before they impact revenue.

Sifflet ai assistant illustration
USE CASE #2

Pricing & Promotions Accuracy

The challenge: Inconsistent pricing across platforms leads to lost margins and customer frustration.

The Sifflet edge: Continuous pricing validation across all systems ensures promotional integrity and customer trust.

Sifflet troubleshoot illustration
USE CASE #3

Omnichannel Customer Experience

The challenge: Data silos cause fragmented profiles and disconnected experiences.

The Sifflet edge: A unified view of customer data enables personalization and stronger loyalty programs.

Sifflet driving illustration
USE CASE #4

AI-Powered Demand Forecasting

The challenge: Outdated forecasting models miss real-world volatility.

The Sifflet edge: ML learns from historical sales, competitor pricing, and external signals to fine-tune demand planning.

sifflet datacatalog

Proactive Data Reliability at Scale

ML-powered, event-driven observability detects issues before they impact revenue, ensuring real-time reliability across thousands of pipelines, even in complex enterprise environments.

Seamless Integration Across Your Retail Stack

Sifflet connects effortlessly with your ERP, POS, CRM, e-commerce, and analytics tools, breaking down data silos and enabling a unified view across all operations.

Empowering Every Team: from Data to Business

Designed for both technical and non-technical users, Sifflet transforms raw data into clear, actionable insights, so your teams can make smarter decisions, faster.

Let’s fix the $9.7B problem before it’s yours.

Retail data shouldn’t be a liability. With Sifflet, it’s your secret weapon.
Say goodbye to guesswork: say hello to reliable insights.

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist
"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam
" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios
"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links
"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Frequently asked questions

What are some signs that our organization might need better data observability?
If your team struggles with delayed dashboards, inconsistent metrics, or unclear data lineage, it's likely time to invest in a data observability solution. At Sifflet, we even created a simple diagnostic to help you assess your data temperature. Whether you're in a 'slow burn' or a 'five alarm fire' state, we can help you improve data reliability and pipeline health.
What’s the difference between static and dynamic freshness monitoring modes?
Great question! In static mode, Sifflet checks whether data has arrived during a specific time slot and alerts you if it hasn’t. In dynamic mode, our system learns your data arrival patterns over time and only sends alerts when something truly unexpected happens. This helps reduce alert fatigue while maintaining high standards for data quality monitoring.
Why is combining dbt Core with a data observability platform like Sifflet a smart move?
Combining dbt Core with a data observability platform like Sifflet helps data teams go beyond transformation and into full-stack monitoring. It enables better root cause analysis, reduces time to resolution, and ensures your data products are trustworthy and resilient.
Why are containers such a big deal in modern data infrastructure?
Containers have become essential in modern data infrastructure because they offer portability, faster deployments, and easier scalability. They simplify the way we manage distributed systems and are a key component in cloud data observability by enabling consistent environments across development, testing, and production.
What benefits does end-to-end data lineage offer my team?
End-to-end data lineage helps your team perform accurate impact assessments and faster root cause analysis. By connecting declared and built-in assets, you get full visibility into upstream and downstream dependencies, which is key for data reliability and operational intelligence.
How does Sifflet help optimize Data as a Product initiatives?
Sifflet enhances DaaP initiatives by providing comprehensive data observability dashboards, real-time metrics, and anomaly detection. It streamlines data pipeline monitoring and supports proactive data quality checks, helping teams ensure their data products are accurate, well-governed, and ready for use or monetization.
How does Sifflet ensure a user-friendly experience for data teams?
We prioritize user research and apply UX principles like Jacob’s Law to design familiar and intuitive workflows. This helps reduce friction for users working with tools like our Sifflet Insights plugin, which brings real-time metrics and data quality monitoring directly into BI dashboards like Looker and Tableau.
Why is data observability becoming essential for modern data teams?
As data pipelines grow more complex, data observability provides the visibility needed to monitor and troubleshoot issues across the full stack. By adopting a robust observability platform, teams can detect anomalies, ensure SLA compliance, and maintain data reliability without relying on manual checks or reactive fixes.
Still have questions?