MONITOR

Lean. Mean. Monitoring Machine. 

Finally, dynamic monitoring that can keep up with your stack. AI features optimize your coverage and minimize noise, detecting issues before they arise. 

Sifflet dashboard features overview

Customize to Your Heart’s Content

Sifflet offers both a robust library of out of the box monitors and customization capability. Your teams decide what needs monitoring and how to set it up. 

Bye-Bye, Alert Fatigue

Data engineers don’t need more alerts, they need smarter alerts. Our AI learns adaptively as it goes to optimize coverage and minimize noise.  

Hello, Data Reliability 

Data reliability is reinforced with less manual work for technical teams, faster response times, and overall stronger performance. 

IMPLEMENT

Ready-to-Go Monitors 

Quick set up and implementation means quicker results. 

  • See value instantly with pre-defined templates to check data at field and table levels
  • Help your business users and technical teams meet their quality and reliability objectives thanks to ready-to-go monitors
Sifflet dashboard overview
SUPERVISE

Lifecycle Monitoring

End-to-end coverage that never sleeps. 

  • Detect anomalies continuously thanks to ML models 
  • Give your business users ownership over monitors through LLM monitoring setup 
  • Maintain control and accuracy with optional manual setup and user feedback
Sifflet dashboard features overview
MAINTAIN

Scalability & Optimization

Monitoring that’s easy to maintain and coverage that’s just right.

  • Optimize monitoring coverage and minimize noise levels with AI-powered suggestions and supervision
  • Implement programmatic monitoring set up and maintenance with Data Quality as Code (DQaC)
Sifflet dashboard overview
TEAMS

Reinforced Reliability

Built for Everyone

Sifflet’s monitoring features reinforce data reliability for all users, so business can deliver.

Data Users

Stop working with corrupt data. Sifflet embeds alerts in your dashboards, so you know exactly when there’s an incident or issue. And you can set up data monitors on your own.

Data Engineers

No more scaling monitors manually. Sifflet’s ML will optimize coverage for you, so you can be proactive instead of reactive in reducing downtimes.

Data Leaders

Give your teams the tools they need to reduce monitoring tasks by up to 50% thanks to Sifflet’s monitoring features.

Data Reliability, Reinforced

Sifflet’s monitoring features reinforce data reliability for all users, so business can deliver.

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data
"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist
"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam
" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios
"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links
"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Frequently asked questions

What’s coming next for dbt integration in Sifflet?
We’re just getting started! Soon, you’ll be able to monitor dbt run performance and resource utilization, define monitors in your dbt YAML files, and use custom metadata even more dynamically. These updates will further enhance your cloud data observability and make your workflows even more efficient.
Why is technology critical to scaling data governance across teams?
Technology automates key governance tasks such as data classification, access control, and telemetry instrumentation. With the right tools, like a data observability platform, organizations can enforce policies at scale, detect anomalies automatically, and integrate governance into daily workflows. This reduces manual effort and ensures governance grows with the business.
Is data observability relevant for small businesses?

Yes! While smaller organizations may have fewer data pipelines, ensuring data quality and reliability is equally important for making accurate decisions and scaling effectively. What really matters is the data stack maturity and volume of data. Take our test here to find out if you really need data observability.

Why is data lineage so critical in a data observability strategy?
Data lineage is the backbone of any strong data observability strategy. It helps teams trace data issues to their source by showing how data flows from ingestion to dashboards and models. With lineage, you can assess the impact of changes, improve collaboration across teams, and resolve anomalies faster. It's especially powerful when combined with anomaly detection and real-time metrics for full visibility across your pipelines.
What’s next for Sifflet’s metrics observability capabilities?
We’re expanding support to more BI and transformation tools beyond Looker, and enhancing our ML-based monitoring to group business metrics by domain. This will improve consistency and make it even easier for users to explore metrics across the semantic layer.
What are some common data quality issues that can be prevented with the right tools?
Common issues like schema changes, missing values, and data drift can all be caught early with effective data quality monitoring. Tools that offer features like threshold-based alerts, data freshness checks, and pipeline health dashboards make it easier to prevent these problems before they affect downstream systems.
How does Shippeo’s use of data pipeline monitoring enhance internal decision-making?
By enriching and aggregating operational data, Shippeo creates a reliable source of truth that supports product and operations teams. Their pipeline health dashboards and observability tools ensure that internal stakeholders can trust the data driving their decisions.
How can data observability help with SLA compliance and incident management?
Data observability plays a huge role in SLA compliance by enabling real-time alerts and proactive monitoring of data freshness, completeness, and accuracy. When issues occur, observability tools help teams quickly perform root cause analysis and understand downstream impacts, speeding up incident response and reducing downtime. This makes it easier to meet service level agreements and maintain stakeholder trust.
Still have questions?