By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information.
Nov 9, 2023

Data quality for all - Un-siloed data quality

Post by
Wissem Fathallah

Defining data quality is far from being a one-size-fits-all task. Data quality should be approached with the unique dynamics and complexities of each organization, adapting to the specificities of the type of data, related technologies, and its usage. This definition encompasses first a technical aspect, universally applicable to all organizations, in which the emphasis is on the smooth functioning of data pipelines. Across industries, consensus prevails on ensuring data freshness, preventing data loss, and maintaining vigilance over schema changes.

However, there exists a critical dimension of data quality that is tied to the specific use cases of the data from the business perspective. This entails, for example, the understanding that certain metrics must never fall below specified thresholds to remain meaningful and that the data is consistent with business logic. In essence, data quality definitions must blend technical robustness and adaptability to the unique landscape of every company. Achieving this balance involves collaboration with all data stakeholders.

Why this matters 

As companies constantly update their data stacks and embrace new approaches to data management, isolated data quality definitions and monitoring results in silent and unseen anomalies. This can lead to data catastrophes (such as customer attrition, legal fines, and uninformed and wrong decision-making), and also productivity issues and challenges when aligning responsibilities and processes across teams. 

The Sifflet approach: Data Observability for all

At Sifflet, we've developed our data observability solution to serve all data teams and stakeholders. Our approach to building our data platform is one so that data remains organized, accessible, and reliable:

  • Organized: Providing a unified and governed platform for seamless collaboration among teams, guaranteeing thorough and consistent monitoring of data pipelines and assets with everybody’s visibility and input. 
  • Accessible: Ensuring that every user effortlessly interacts with the product in the most user-friendly manner possible, with the product’s programmatic capabilities for technical teams, or through the UI for non-technical teams. 
  • Reliable: Enabling companies to swiftly resolve detected anomalies, achieving the shortest time-to-resolution through comprehensive root cause analysis and business impact assessment.

Below is how these concepts are transformed into tangible product functionalities. 


Use-case agnostic monitors library to cater to every use case

Sifflet provides a wide range of ML-based monitors developed to support any use case, such as table-level health monitors, field profiling, format validations, metrics health, and business logic without relying on complex and custom SQL queries.

All templates come pre-computed, enabling quick and straightforward setup, and they offer multiple parameterization options for customization, allowing users to fine-tune the solution to their specific needs.


Intuitive UI for quick insights and ease of use

Sifflet’s intuitive UI provides a seamless and efficient user experience, allowing users to quickly create monitors create monitors and gain valuable insights about their data quality vulnerabilities. Users can easily track the monitoring results over time to identify patterns and trends and identify actions for improvement. 

Sifflet’s AI-driven Assistant to deliver data observability at scale

The Sifflet AI Assistant simplifies data context enrichment and data quality monitoring setup, and maintenance. 

For business users, the Sifflet AI Assistant allows the creation of complex data quality monitors using natural language, such as setting a monitor for specific data formatting without getting into the complexities of using regular expressions. Furthermore, all Sifflet users can utilize the AI Assistant to supervise active monitors and tweak the parameters of ML-based monitors to optimize accuracy and reduce false alerts.


Incident reports for efficient troubleshooting and building the bridge between teams

Powered by ‌field-level automated lineage, Sifflet goes beyond the detection of the anomaly to enable troubleshooting with minimal time-to-resolution. This is delivered with the automated business impact assessment, the root cause analysis, and the seamless cross-team collaboration on the incident report. 


With Sifflet, organizations can effectively design and manage their own meaningful version of data quality. Data engineers can monitor their data pipelines while having visibility of the business requirements and dependencies. Data users can collaborate with their colleagues on the platforms which extends the monitoring coverage of their team's needs based on their data use cases. Finally, leaders can have the peace of mind of being ahead of any quality catastrophes while ensuring team productivity.

Related content