


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
How is data freshness different from latency or timeliness?
Great question! While these terms are often used interchangeably, they each mean something different. Data freshness is about how up-to-date your data is. Latency measures the delay from data generation to availability, and timeliness refers to whether that data arrives within expected time windows. Understanding these differences is key to effective data pipeline monitoring and SLA compliance.
What are some best practices for ensuring SLA compliance in data pipelines?
To stay on top of SLA compliance, it's important to define clear service level objectives (SLOs), monitor data freshness checks, and set up real-time alerts for anomalies. Tools that support automated incident response and pipeline health dashboards can help you detect and resolve issues quickly. At Sifflet, we recommend integrating observability tools that align both technical and business metrics to maintain trust in your data.
What are the key components of an end-to-end data platform?
An end-to-end data platform includes layers for ingestion, storage, transformation, orchestration, governance, observability, and analytics. Each part plays a role in making data reliable and actionable. For example, data lineage tracking and real-time metrics collection help ensure transparency and performance across the pipeline.
What role does MCP play in improving data quality monitoring?
MCP enables LLMs to access structured context like schema changes, validation rules, and logs, making it easier to detect and explain data quality issues. With tool calls and memory, agents can continuously monitor pipelines and proactively alert teams when data quality deteriorates. This supports better SLA compliance and more reliable data operations.
Who should be responsible for data quality in an organization?
That's a great topic! While there's no one-size-fits-all answer, the best data quality programs are collaborative. Everyone from data engineers to business users should play a role. Some organizations adopt data contracts or a Data Mesh approach, while others use centralized observability tools to enforce data validation rules and ensure SLA compliance.
What should I look for in a modern data discovery tool?
Look for features like self-service discovery, automated metadata collection, and end-to-end data lineage. Scalability is key too, especially as your data grows. Tools like Sifflet also integrate data observability, so you can monitor data quality and pipeline health while exploring your data assets.
How does Sifflet make setting up data quality monitoring easier?
Great question! With the launch of Data-Quality-as-Code v2, Sifflet has made it much easier to create and manage monitors at scale. Whether you prefer working programmatically or through the UI, our platform now offers smoother workflows and standardized threshold settings for more intuitive data quality monitoring.
Why is data observability important during the data integration process?
Data observability is key during data integration because it helps detect issues like schema changes or broken APIs early on. Without it, bad data can flow downstream, impacting analytics and decision-making. At Sifflet, we believe observability should start at the source to ensure data reliability across the whole pipeline.