Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

Can Sifflet extend the capabilities of dbt tests for better observability?
Absolutely! While dbt tests are a great starting point, Sifflet takes things further with advanced observability tools. By ingesting dbt tests into Sifflet, you can apply powerful features like dynamic thresholding, real-time alerts, and incident response automation. It’s a big step up in data reliability and SLA compliance.
What practical steps can companies take to build a data-driven culture?
To build a data-driven culture, start by investing in data literacy, aligning goals across teams, and adopting observability tools that support proactive monitoring. Platforms with features like metrics collection, telemetry instrumentation, and real-time alerts can help ensure data reliability and build trust in your analytics.
Can Sifflet help reduce false positives during holidays or special events?
Absolutely! We know that data patterns can shift during holidays or unique business dates. That’s why Sifflet now lets you exclude these dates from alerts by selecting from common calendars or customizing your own. This helps reduce alert fatigue and improves the accuracy of anomaly detection across your data pipelines.
Why is data observability a crucial part of the modern data stack?
Data observability is essential because it ensures data reliability across your entire stack. As data pipelines grow more complex, having visibility into data freshness, quality, and lineage helps prevent issues before they impact the business. Tools like Sifflet offer real-time metrics, anomaly detection, and root cause analysis so teams can stay ahead of data problems and maintain trust in their analytics.
How does the new Fivetran integration enhance data observability in Sifflet?
Great question! With our new Fivetran integration, Sifflet now provides visibility into your data's journey even before it reaches your data platform. This means you can track data from its source through Fivetran connectors all the way downstream, offering truly end-to-end data observability.
How does this integration help with root cause analysis?
By including Fivetran connectors and source assets in the lineage graph, Sifflet gives you full visibility into where data issues originate. This makes it much easier to perform root cause analysis and resolve incidents faster, improving overall data reliability.
What is dbt Impact Analysis and how does it help with data observability?
dbt Impact Analysis is a new feature from Sifflet that automatically comments on GitHub or GitLab pull requests with a list of impacted assets when a dbt model is changed. This helps teams enhance their data observability by understanding downstream effects before changes go live.
How does the updated lineage graph help with root cause analysis?
By merging dbt model nodes with dataset nodes, our streamlined lineage graph removes clutter and highlights what really matters. This cleaner view enhances root cause analysis by letting you quickly trace issues back to their source with fewer distractions and more context.
Still have questions?