Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

What does a modern data stack look like and why does it matter?
A modern data stack typically includes tools for ingestion, warehousing, transformation and business intelligence. For example, you might use Fivetran for ingestion, Snowflake for warehousing, dbt for transformation and Looker for analytics. Investing in the right observability tools across this stack is key to maintaining data reliability and enabling real-time metrics that support smart, data-driven decisions.
Why is data lineage tracking important in a data catalog solution?
Data lineage tracking is key to understanding how data flows through your systems. It helps teams visualize the origin and transformation of datasets, making root cause analysis and impact assessments much faster. For teams focused on data observability and pipeline health, this feature is a must-have.
Why is the new join feature in the monitor UI a game changer for data quality monitoring?
The ability to define joins directly in the monitor setup interface means you can now monitor relationships across datasets without writing custom SQL. This is crucial for data quality monitoring because many issues arise from inconsistencies between related tables. Now, you can catch those problems early and ensure better data reliability across your pipelines.
How can data observability help prevent missed SLAs and unreliable dashboards?
Data observability plays a key role in SLA compliance by detecting issues like ingestion latency, schema changes, or data drift before they impact downstream users. With proper data quality monitoring and real-time metrics, you can catch problems early and keep your dashboards and reports reliable.
How can Sifflet help ensure SLA compliance and prevent bad data from affecting business decisions?
Sifflet helps teams stay on top of SLA compliance with proactive data freshness checks, anomaly detection, and incident tracking. Business users can rely on health indicators and lineage views to verify data quality before making decisions, reducing the risk of costly errors due to unreliable data.
Can I use Sifflet to detect issues in my dbt models before they impact downstream dashboards?
Absolutely! Sifflet's real-time anomaly detection and full data lineage tracking make it easy to catch issues in your dbt models early. This proactive approach helps prevent broken dashboards and ensures data reliability across your analytics pipeline.
How does Sifflet support enterprises with data pipeline monitoring?
Sifflet provides a comprehensive observability platform that monitors the health of data pipelines through features like pipeline error alerting, data freshness checks, and ingestion latency tracking. This helps teams identify issues early and maintain SLA compliance across their data workflows.
Can I use data monitoring and data observability together?
Absolutely! In fact, data monitoring is often a key feature within a broader data observability solution. At Sifflet, we combine traditional monitoring with advanced capabilities like data profiling, pipeline health dashboards, and data drift detection so you get both alerts and insights in one place.
Still have questions?