Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

How does Full Data Stack Observability help improve data quality at scale?
Full Data Stack Observability gives you end-to-end visibility into your data pipeline, from ingestion to consumption. It enables real-time anomaly detection, root cause analysis, and proactive alerts, helping you catch and resolve issues before they affect your dashboards or reports. It's a game-changer for organizations looking to scale data quality efforts efficiently.
How does data lineage tracking help when something breaks?
Data lineage tracking is a lifesaver when you’re dealing with broken dashboards or bad reports. It maps your data’s journey from source to consumption, so when something goes wrong, you can quickly see what downstream assets are affected. This is key for fast root cause analysis and helps you notify the right business stakeholders. A good observability platform will give you both technical and business lineage, making it easier to trace issues back to their source.
What are some key benefits of using an observability platform like Sifflet?
Using an observability platform like Sifflet brings several benefits: real-time anomaly detection, proactive incident management, improved SLA compliance, and better data governance. By combining metrics, metadata, and lineage, we help teams move from reactive data quality monitoring to proactive, scalable observability that supports reliable, data-driven decisions.
Can I see how a business metric is calculated in Sifflet?
Absolutely! With Sifflet’s data lineage tracking, users can view the full column-level lineage from ingestion to consumption. This transparency helps users understand how each metric is computed and how it relates to other data or metrics in the pipeline.
What can I expect from Sifflet at Big Data Paris 2024?
We're so excited to welcome you at Booth #D15 on October 15 and 16! You’ll get to experience live demos of our latest data observability features, hear real client stories like Saint-Gobain’s, and explore how Sifflet helps improve data reliability and streamline data pipeline monitoring.
How does reverse ETL improve data reliability and reduce manual data requests?
Reverse ETL automates the syncing of data from your warehouse to business apps, helping reduce the number of manual data requests across teams. This improves data reliability by ensuring consistent, up-to-date information is available where it’s needed most, while also supporting SLA compliance and data automation efforts.
How does a unified data observability platform like Sifflet help reduce chaos in data management?
Great question! At Sifflet, we believe that bringing together data cataloging, data quality monitoring, and lineage tracking into a single observability platform helps reduce Data Entropy and streamline how teams manage and trust their data. By centralizing these capabilities, users can quickly discover assets, monitor their health, and troubleshoot issues without switching tools.
How does data observability complement a data catalog?
While a data catalog helps you find and understand your data, data observability ensures that the data you find is actually reliable. Observability tools like Sifflet monitor the health of your data pipelines in real time, using features like data freshness checks, anomaly detection, and data quality monitoring. Together, they give you both visibility and trust in your data.
Still have questions?