


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
What role do tools like Apache Spark and dbt play in data transformation?
Apache Spark and dbt are powerful tools for managing different aspects of data transformation. Spark is great for large-scale, distributed processing, especially when working with complex transformations and high data volumes. dbt, on the other hand, brings software engineering best practices to SQL-based transformations, making it ideal for analytics engineering. Both tools benefit from integration with observability platforms to ensure transformation pipelines run smoothly and reliably.
Why is data observability essential when treating data as a product?
Great question! When you treat data as a product, you're committing to delivering reliable, high-quality data to your consumers. Data observability ensures that issues like data drift, broken pipelines, or unexpected anomalies are caught early, so your data stays trustworthy and valuable. It's the foundation for data reliability and long-term success.
How does data observability differ from traditional data quality monitoring?
Great question! While data quality monitoring focuses on alerting teams when data deviates from expected parameters, data observability goes further by providing context through data lineage tracking, real-time metrics, and root cause analysis. This holistic view helps teams not only detect issues but also understand and fix them faster, making it a more proactive approach.
What are some of the latest technologies integrated into Sifflet's observability tools?
We've been exploring and integrating a variety of cutting-edge technologies, including dynamic thresholding for anomaly detection, data profiling tools, and telemetry instrumentation. These tools help enhance our pipeline health dashboard and improve transparency in data pipelines.
What makes Carrefour’s approach to observability scalable and effective?
Carrefour’s approach combines no-code self-service tools with as-code automation, making it easy for both technical and non-technical users to adopt. This balance, along with incremental implementation and cultural emphasis on data quality, supports scalable observability across the organization.
Can historical data access really boost data consumer confidence?
Absolutely! When data consumers can see historical performance through data observability dashboards, it builds transparency and trust. They’re more likely to rely on your data if they know it’s been consistently accurate and well-maintained over time.
How does Sifflet support reverse ETL and operational analytics?
Sifflet enhances reverse ETL workflows by providing data observability dashboards and real-time monitoring. Our platform ensures your data stays fresh, accurate, and actionable by enabling root cause analysis, data lineage tracking, and proactive anomaly detection across your entire pipeline.
What’s new in Sifflet’s data quality monitoring capabilities?
We’ve rolled out several powerful updates to help you monitor data quality more effectively. One highlight is our new referential integrity monitor, which ensures logical consistency between tables, like verifying that every order has a valid customer ID. We’ve also enhanced our Data Quality as Code framework, making it easier to scale monitor creation with templates and for-loops.













-p-500.png)
