


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
How can a strong data platform support SLA compliance and business growth?
A well-designed data platform supports SLA compliance by ensuring data is timely, accurate, and reliable. With features like data drift detection and dynamic thresholding, teams can meet service-level objectives and scale confidently. Over time, this foundation enables faster decisions, stronger products, and better customer experiences.
How does schema evolution impact batch and streaming data observability?
Schema evolution can introduce unexpected fields or data type changes that disrupt both batch and streaming data workflows. With proper data pipeline monitoring and observability tools, you can track these changes in real time and ensure your systems adapt without losing data quality or breaking downstream processes.
How does Sifflet’s Freshness Monitor scale across large data environments?
Sifflet’s Freshness Monitor is designed to scale effortlessly. Thanks to our dynamic monitoring mode and continuous scan feature, you can monitor thousands of data assets without manually setting schedules. It’s a smart way to implement data pipeline monitoring across distributed systems and ensure SLA compliance at scale.
How does Sifflet help with root cause analysis when something breaks in a data pipeline?
When a data issue arises, Sifflet gives you the context you need to act fast. Our observability platform connects the dots across your data stack—tracking lineage, surfacing schema changes, and highlighting impacted assets. That makes root cause analysis much easier, whether you're dealing with ingestion latency or a failed transformation job. Plus, our AI helps explain anomalies in plain language.
What exactly is data quality, and why should teams care about it?
Data quality refers to how accurate, complete, consistent, and timely your data is. It's essential because poor data quality can lead to unreliable analytics, missed business opportunities, and even financial losses. Investing in data quality monitoring helps teams regain trust in their data and make confident, data-driven decisions.
What role does data lineage tracking play in data governance?
Data lineage tracking is essential for understanding where data comes from, how it changes, and where it goes. It supports compliance efforts, improves root cause analysis, and reduces confusion in cross-functional teams. Combined with data governance, lineage tracking ensures transparency in data pipelines and builds trust in analytics and reporting.
How is Etam using data observability to support its 2025 strategy?
Etam is leveraging data observability as a foundational element of its 2025 data strategy. With Sifflet’s observability platform, the team can monitor data quality, detect issues early, and ensure data reliability, which helps them move faster and with more confidence across the business.
How does Sifflet help with data freshness monitoring?
At Sifflet, we offer a powerful Freshness Monitor that tracks when your data arrives and alerts you if it's missing or delayed. Whether you're working with batch or streaming pipelines, our observability platform makes it easy to stay on top of data freshness and ensure your analytics stay accurate and timely.













-p-500.png)
