Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

Why is data observability becoming such a priority for enterprises in 2025?
Great question! As more organizations rely on AI and analytics for decision-making, ensuring data quality, health, and reliability has become non-negotiable. Data observability platforms like Sifflet help teams detect issues early, reduce downtime, and maintain trust in their data pipelines.
How does Sifflet support real-time metrics and proactive monitoring?
Sifflet’s observability platform is designed to provide real-time metrics and proactive monitoring through advanced data quality checks, anomaly detection, and custom health scores. This helps data teams catch issues before they escalate, ensuring your data products stay healthy and consistent.
How does Sifflet help with monitoring data distribution?
Sifflet makes distribution monitoring easy by using statistical profiling to learn what 'normal' looks like in your data. It then alerts you when patterns drift from those baselines. This helps you maintain SLA compliance and avoid surprises in dashboards or ML models. Plus, it's all automated within our data observability platform so you can focus on solving problems, not just finding them.
How does data observability help ensure SLA compliance for data products?
Data observability plays a big role in SLA compliance by continuously monitoring data freshness, quality, and availability. With tools like Sifflet, teams can set alerts and track metrics that align with their SLAs, ensuring data products meet business expectations consistently.
How did Dailymotion use data observability to support their shift to a product-oriented data platform?
Dailymotion embedded data observability into their data ecosystem to ensure trust, reliability, and discoverability across teams. This shift allowed them to move from ad hoc data requests to delivering scalable, analytics-driven data products that empower both engineers and business users.
What’s next for Sifflet’s metrics observability capabilities?
We’re expanding support to more BI and transformation tools beyond Looker, and enhancing our ML-based monitoring to group business metrics by domain. This will improve consistency and make it even easier for users to explore metrics across the semantic layer.
What role did data observability play in improving Meero's data reliability?
Data observability was key to Meero's success in maintaining reliable data pipelines. By using Sifflet’s observability platform, they could monitor data freshness, schema changes, and volume anomalies, ensuring their data remained trustworthy and accurate for business decision-making.
Why is data observability becoming essential for data-driven companies?
As more businesses rely on data to drive decisions, ensuring data reliability is critical. Data observability provides transparency into the health of your data assets and pipelines, helping teams catch issues early, stay compliant with SLAs, and ultimately build trust in their data.
Still have questions?