Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

How can organizations improve data governance with modern observability tools?
Modern observability tools offer powerful features like data lineage tracking, audit logging, and schema registry integration. These capabilities help organizations improve data governance by providing transparency, enforcing data contracts, and ensuring compliance with evolving regulations like GDPR.
How can Sifflet help ensure SLA compliance and prevent bad data from affecting business decisions?
Sifflet helps teams stay on top of SLA compliance with proactive data freshness checks, anomaly detection, and incident tracking. Business users can rely on health indicators and lineage views to verify data quality before making decisions, reducing the risk of costly errors due to unreliable data.
Why is data observability gaining momentum now, even though software observability has been around for a while?
Great question! Software observability took off in the 2010s with the rise of cloud-native apps, but data observability is catching up fast. As businesses start treating data as a mission-critical asset—especially with the growth of AI and cloud data platforms like Snowflake—the need for real-time visibility, data reliability, and governance has become urgent. We're in the early innings, but the pace is accelerating quickly.
How does the updated lineage graph help with root cause analysis?
By merging dbt model nodes with dataset nodes, our streamlined lineage graph removes clutter and highlights what really matters. This cleaner view enhances root cause analysis by letting you quickly trace issues back to their source with fewer distractions and more context.
How does Sifflet use AI to enhance data observability?
Sifflet uses AI not just for buzzwords, but to genuinely improve your workflows. From AI-powered metadata generation to dynamic thresholding and intelligent anomaly detection, Sifflet helps teams automate data quality monitoring and make faster, smarter decisions based on real-time insights.
Why is embedding observability tools at the orchestration level important?
Embedding observability tools like Flow Stopper at the orchestration level gives teams visibility into pipeline health before data hits production. This kind of proactive monitoring is key for maintaining data reliability and reducing downtime due to broken pipelines.
How does field-level lineage improve root cause analysis in observability platforms like Sifflet?
Field-level lineage allows users to trace issues down to individual columns across tables, making it easier to pinpoint where a problem originated. This level of detail enhances root cause analysis and impact assessment, helping teams resolve incidents quickly and maintain trust in their data.
How does data observability fit into the modern data stack?
Data observability integrates across your existing data stack, from ingestion tools like Airflow and AWS Glue to storage solutions like Snowflake and Redshift. It acts as a monitoring layer that provides real-time insights and alerts across each stage, helping teams maintain pipeline health and ensure data freshness checks are always in place.
Still have questions?