Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

How did Sifflet help reduce onboarding time for new data team members at jobvalley?
Sifflet’s data catalog provided a clear and organized view of jobvalley’s data assets, making it much easier for new team members to understand the data landscape. This significantly cut down onboarding time and helped new hires become productive faster.
How does SQL Table Tracer handle different SQL dialects?
SQL Table Tracer uses Antlr4 with semantic predicates to support multiple SQL dialects like Snowflake, Redshift, and PostgreSQL. This flexible parsing approach ensures accurate lineage extraction across diverse environments, which is essential for data pipeline monitoring and distributed systems observability.
Is data governance more about culture or tools?
It's a mix of both, but culture plays a big role. As Dan Power puts it, 'culture eats strategy for breakfast.' Even the best observability tools won't succeed without enterprise-wide data literacy and buy-in. That’s why training, user-friendly platforms, and fostering collaboration are just as important as the technology stack you choose.
How can I monitor the health of my ETL or ELT pipelines?
Monitoring pipeline health is essential for maintaining data reliability. You can use tools that offer data pipeline monitoring features such as real-time metrics, ingestion latency tracking, and pipeline error alerting. Sifflet’s pipeline health dashboard gives you full visibility into your ETL and ELT processes, helping you catch issues early and keep your data flowing smoothly.
Why is data observability becoming so important for businesses in 2025?
Great question! As Salma Bakouk shared in our recent webinar, data observability is critical because it builds trust and reliability across your data ecosystem. With poor data quality costing companies an average of $13 million annually, having a strong observability platform helps teams proactively detect issues, ensure data freshness, and align analytics efforts with business goals.
Can the Sifflet AI Assistant help non-technical users with data quality monitoring?
Absolutely! One of our goals is to democratize data observability. The Sifflet AI Assistant is designed to be accessible to both technical and non-technical users, offering natural language interfaces and actionable insights that simplify data quality monitoring across the organization.
Can Sifflet extend the capabilities of dbt tests for better observability?
Absolutely! While dbt tests are a great starting point, Sifflet takes things further with advanced observability tools. By ingesting dbt tests into Sifflet, you can apply powerful features like dynamic thresholding, real-time alerts, and incident response automation. It’s a big step up in data reliability and SLA compliance.
What is data observability and why is it important for modern data teams?
Data observability is the ability to monitor, understand, and troubleshoot data health across the entire data stack. It's essential for modern data teams because it helps ensure data reliability, improves trust in analytics, and prevents costly issues caused by broken data pipelines or inaccurate dashboards. With the rise of complex infrastructures and real-time data usage, having a strong observability platform in place is no longer optional.
Still have questions?