


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
Can I use Sifflet’s data observability tools with other platforms besides Airbyte?
Absolutely! While we’ve built a powerful solution for Airbyte, our Declarative Lineage API is flexible enough to support other platforms like Kafka, Census, Hightouch, and Talend. You can use our sample Python scripts to integrate lineage from these tools and enhance your overall data observability strategy.
How does Sifflet support data pipeline monitoring at Carrefour?
Sifflet enables comprehensive data pipeline monitoring through features like monitoring-as-code and seamless integration with data lineage tracking and governance tools. This gives Carrefour full visibility into their pipeline health and helps ensure SLA compliance.
How does data observability complement a data catalog?
While a data catalog helps you find and understand your data, data observability ensures that the data you find is actually reliable. Observability tools like Sifflet monitor the health of your data pipelines in real time, using features like data freshness checks, anomaly detection, and data quality monitoring. Together, they give you both visibility and trust in your data.
How does Sifflet help close the observability gap for Airbyte pipelines?
Great question! Sifflet bridges the observability gap for Airbyte by using our Declarative Lineage API and a custom Python script. This allows you to capture complete data lineage from Airbyte and ingest it into Sifflet, giving you full visibility into your pipelines and enabling better root cause analysis and data quality monitoring.
How does data profiling support GDPR compliance efforts?
Data profiling helps by automatically identifying and tagging personal data across your systems. This is vital for GDPR, where you need to know exactly what PII you have and where it's stored. Combined with data quality monitoring and metadata discovery, profiling makes it easier to manage consent, enforce data contracts, and ensure data security compliance.
How does data observability help improve data reliability?
Data observability gives you end-to-end visibility into your data pipelines, helping you catch issues like schema changes, data drift, or ingestion failures before they impact downstream systems. By continuously monitoring real-time metrics and enabling root cause analysis, observability platforms like Sifflet ensure your data stays accurate, complete, and up-to-date, which directly supports stronger data reliability.
How does Sifflet support data quality monitoring for large organizations?
Sifflet is built to scale. It supports automated data quality monitoring across hundreds of assets, as seen with Carrefour Links monitoring over 800 data assets in 8+ countries. With dynamic thresholding, schema change detection, and real-time metrics, Sifflet ensures SLA compliance and consistent data reliability across complex ecosystems.
Why is Sifflet focusing on AI agents for observability now?
With data stacks growing rapidly and teams staying the same size or shrinking, proactive monitoring is more important than ever. These AI agents bring memory, reasoning, and automation into the observability platform, helping teams scale their efforts with confidence and clarity.













-p-500.png)
