Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

How does Sifflet support reverse ETL and operational analytics?
Sifflet enhances reverse ETL workflows by providing data observability dashboards and real-time monitoring. Our platform ensures your data stays fresh, accurate, and actionable by enabling root cause analysis, data lineage tracking, and proactive anomaly detection across your entire pipeline.
Why is technology critical to scaling data governance across teams?
Technology automates key governance tasks such as data classification, access control, and telemetry instrumentation. With the right tools, like a data observability platform, organizations can enforce policies at scale, detect anomalies automatically, and integrate governance into daily workflows. This reduces manual effort and ensures governance grows with the business.
What’s a real-world example of Dailymotion using real-time metrics to drive business value?
One standout example is their ad inventory forecasting tool. By embedding real-time metrics into internal tools, sales teams can plan campaigns more precisely and avoid last-minute scrambles. It’s a great case of using data to improve both accuracy and efficiency.
What is “data-quality-as-code”?

Data-quality-as-code (DQaC) allows you to programmatically define and enforce data quality rules using code. This ensures consistency, scalability, and better integration with CI/CD pipelines. Read more here to find out how to leverage it within Sifflet

How do real-time alerts support SLA compliance?
Real-time alerts are crucial for staying on top of potential issues before they escalate. By setting up threshold-based alerts and receiving notifications through channels like Slack or email, teams can act quickly to resolve problems. This proactive approach helps maintain SLA compliance and keeps your data operations running smoothly.
What types of data lineage should I know about?
There are four main types: technical lineage, business lineage, cross-system lineage, and governance lineage. Each serves a different purpose, from debugging pipelines to supporting compliance. Tools like Sifflet offer field-level lineage for deeper insights, helping teams across engineering, analytics, and compliance understand and trust their data.
Can I deploy Sifflet in my own environment for better control?
Absolutely! Sifflet offers both SaaS and self-managed deployment models. With the self-managed option, you can run the platform entirely within your own infrastructure, giving you full control and helping meet strict compliance and security requirements.
When should companies start implementing data quality monitoring tools?
Ideally, data quality monitoring should begin as early as possible in your data journey. As Dan Power shared during Entropy, fixing issues at the source is far more efficient than tracking down errors later. Early adoption of observability tools helps you proactively catch problems, reduce manual fixes, and improve overall data reliability from day one.
Still have questions?