Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

Is there a data observability platform that supports both business and technical users?
Yes, Sifflet is designed to be accessible for both business stakeholders and data engineers. It offers intuitive interfaces for no-code monitor creation, context-rich alerts, and field-level data lineage tracking. This democratizes data quality monitoring and helps teams across the organization stay aligned on data health and pipeline performance.
What strategies can help smaller data teams stay productive and happy?
For smaller teams, simplicity and clarity are key. Implementing lightweight data observability dashboards and using tools that support real-time alerts and Slack notifications can help them stay agile without feeling overwhelmed. Also, defining clear roles and giving access to self-service tools boosts autonomy and satisfaction.
Why do traditional data contracts often fail in dynamic environments?
Traditional data contracts struggle because they’re static by nature, while modern data systems are constantly evolving. As AI and real-time workloads become more common, these contracts can’t keep up with schema changes, data drift, or business logic updates. That’s why many teams are turning to data observability platforms like Sifflet to bring context, real-time metrics, and trust into the equation.
Why should data alerts live in ServiceNow?
If your team already uses ServiceNow for incident management, having your data alerts show up there means fewer missed issues and faster resolution times. It brings transparency to your data pipelines and supports better data governance and trust.
How can I prevent schema changes from breaking my data pipelines?
You can prevent schema-related breakages by using data observability tools that offer real-time schema drift detection and alerting. These tools help you catch changes early, validate against data contracts, and maintain SLA compliance across your data pipelines.
Why is data lineage a pillar of Full Data Stack Observability?
At Sifflet, we consider data lineage a core part of Full Data Stack Observability because it connects data quality monitoring with data discovery. By mapping data dependencies, teams can detect anomalies faster, perform accurate root cause analysis, and maintain trust in their data pipelines.
How did Sifflet help Meero reduce the time spent on troubleshooting data issues?
Sifflet significantly cut down Meero's troubleshooting time by enabling faster root cause analysis. With real-time alerts and automated anomaly detection, the data team was able to identify and resolve issues in minutes instead of hours, saving up to 50% of their time.
Why is data observability becoming more important in 2024?
Great question! As AI and real-time data products become more widespread, data observability is crucial for ensuring data reliability, privacy, and performance. A strong observability platform helps reduce data chaos by monitoring pipeline health, identifying anomalies, and maintaining SLA compliance across increasingly complex data ecosystems.
Still have questions?