


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
How does Sifflet handle root cause analysis differently from Monte Carlo?
Sifflet’s AI agent, Sage, performs root cause analysis by combining metadata, query logs, code changes, and historical incidents to build a full narrative of the issue. This speeds up resolution and provides context-rich insights, making it easier to pinpoint and fix data pipeline issues efficiently.
What makes Sifflet's approach to data pipeline monitoring unique?
We take a holistic, end-to-end approach to data pipeline monitoring. By collecting telemetry across the entire data stack and automatically tracking field-level data lineage, we empower teams to quickly identify issues and understand their downstream impact, making incident response and resolution much more efficient.
Who should be the first hire on a new data team?
If you're just starting out, look for someone with 'Full Data Stack' capabilities, like a Data Analyst with strong SQL and business acumen or a Data Engineer with analytics skills. This person can work closely with other teams to build initial pipelines and help shape your data platform. As your needs evolve, you can grow your team with more specialized roles.
Can I add non-integrated tools like Salesforce or HubSpot to my data catalog?
Absolutely! With Sifflet’s declarative framework, you can programmatically declare assets from tools like Salesforce, SAP, or HubSpot, even if they aren’t natively integrated. This helps you maintain a complete and unified view of your data ecosystem for better data governance.
What is SQL Table Tracer and how does it help with data lineage tracking?
SQL Table Tracer (STT) is a lightweight library that automatically extracts table-level lineage from SQL queries. It identifies both destination and upstream tables, making it easier to understand data dependencies and build reliable data lineage workflows. This is a key component of any effective data observability strategy.
How do modern storage platforms like Snowflake and S3 support observability tools?
Modern platforms like Snowflake and Amazon S3 expose rich metadata and access patterns that observability tools can monitor. For example, Sifflet integrates with Snowflake to track schema changes, data freshness, and query patterns, while S3 integration enables us to monitor ingestion latency and file structure changes. These capabilities are key for real-time metrics and data quality monitoring.
Why do traditional data contracts often fail in dynamic environments?
Traditional data contracts struggle because they’re static by nature, while modern data systems are constantly evolving. As AI and real-time workloads become more common, these contracts can’t keep up with schema changes, data drift, or business logic updates. That’s why many teams are turning to data observability platforms like Sifflet to bring context, real-time metrics, and trust into the equation.
What are some common signs of a data distribution issue?
Some red flags include missing categories, unusual clustering of values, unexpected outliers, or uneven splits that don’t align with business logic. These issues often sneak past volume or schema checks, which is why proactive data quality monitoring and data profiling are so important for catching them early.













-p-500.png)
