


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
What makes data observability different from traditional monitoring tools?
Traditional monitoring tools focus on infrastructure and application performance, while data observability digs into the health and trustworthiness of your data itself. At Sifflet, we combine metadata monitoring, data profiling, and log analysis to provide deep insights into pipeline health, data freshness checks, and anomaly detection. It's about ensuring your data is accurate, timely, and reliable across the entire stack.
How can business teams benefit from using Sifflet Insights?
Business teams can access data quality insights directly within their BI dashboards, reducing their reliance on data engineers. This democratizes data observability and empowers teams to make confident, data-driven decisions with full transparency into data lineage and reliability.
How does Sifflet help with compliance monitoring and audit logging?
Sifflet is ISO 27001 certified and SOC 2 compliant, and we use a separate secret manager to handle credentials securely. This setup ensures a strong audit trail and tight access control, making compliance monitoring and audit logging seamless for your data teams.
Can I build custom observability dashboards using Sifflet data?
Absolutely! With Sifflet's Data Sharing, you can connect your favorite BI tools like Looker, Tableau, or Power BI to our shared tables. This lets you build tailored dashboards and reports using real-time metrics from your observability data, helping you track KPIs, monitor SLA compliance, and visualize trends across teams or domains.
How can Sifflet help ensure SLA compliance and prevent bad data from affecting business decisions?
Sifflet helps teams stay on top of SLA compliance with proactive data freshness checks, anomaly detection, and incident tracking. Business users can rely on health indicators and lineage views to verify data quality before making decisions, reducing the risk of costly errors due to unreliable data.
How does Sifflet maintain visual and interaction consistency across its observability platform?
We use a reusable component library based on atomic design principles, along with UX writing guidelines to ensure consistent terminology. This helps users quickly understand telemetry instrumentation, metrics collection, and incident response workflows without needing to relearn interactions across different parts of the platform.
How can organizations improve data governance with modern observability tools?
Modern observability tools offer powerful features like data lineage tracking, audit logging, and schema registry integration. These capabilities help organizations improve data governance by providing transparency, enforcing data contracts, and ensuring compliance with evolving regulations like GDPR.
How do logs contribute to observability in data pipelines?
Logs capture interactions between data and external systems or users, offering valuable insights into data transformations and access patterns. They are essential for detecting anomalies, understanding data drift, and improving incident response in both batch and streaming data monitoring environments.













-p-500.png)
