Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

What’s the difference between static and dynamic freshness monitoring modes?
Great question! In static mode, Sifflet checks whether data has arrived during a specific time slot and alerts you if it hasn’t. In dynamic mode, our system learns your data arrival patterns over time and only sends alerts when something truly unexpected happens. This helps reduce alert fatigue while maintaining high standards for data quality monitoring.
Why is Sifflet focusing on AI agents for observability now?
With data stacks growing rapidly and teams staying the same size or shrinking, proactive monitoring is more important than ever. These AI agents bring memory, reasoning, and automation into the observability platform, helping teams scale their efforts with confidence and clarity.
How does SQL Table Tracer support different SQL dialects for data lineage tracking?
SQL Table Tracer uses Antlr4 and a unified grammar with semantic predicates to support multiple SQL dialects like Snowflake, Redshift, and PostgreSQL. This ensures accurate data lineage tracking across diverse systems without needing separate parsers for each dialect.
What role does reverse ETL play in operational analytics?
Reverse ETL bridges the gap between data teams and business users by moving data from the warehouse into tools like CRMs and marketing platforms. This enables operational analytics, where business teams can act on real-time data. To ensure this process runs smoothly, data observability dashboards can monitor for pipeline errors and enforce data validation rules.
How does the Sifflet AI Assistant improve data observability at scale?
The Sifflet AI Assistant enhances data observability by automatically fine-tuning your monitoring setup using machine learning and dynamic thresholds. It continuously adapts to changes in your data pipelines, reducing false positives and ensuring accurate anomaly detection, even as your data scales globally.
Can Sifflet help with root cause analysis when there's a data issue?
Absolutely. Sifflet's built-in data lineage tracking plays a key role in root cause analysis. If a dashboard shows unexpected data, teams can trace the issue upstream through the lineage graph, identify where the problem started, and resolve it faster. This visibility makes troubleshooting much more efficient and collaborative.
What kind of usage insights can I get from Sifflet to optimize my data resources?
Sifflet helps you identify underused or orphaned data assets through lineage and usage metadata. By analyzing this data, you can make informed decisions about deprecating unused tables or enhancing monitoring for critical pipelines. It's a smart way to improve pipeline resilience and reduce unnecessary costs in your data ecosystem.
Can I use Sifflet’s data observability tools with other platforms besides Airbyte?
Absolutely! While we’ve built a powerful solution for Airbyte, our Declarative Lineage API is flexible enough to support other platforms like Kafka, Census, Hightouch, and Talend. You can use our sample Python scripts to integrate lineage from these tools and enhance your overall data observability strategy.
Still have questions?