Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

What makes Etam’s data strategy resilient in a fast-changing retail landscape?
Etam’s data strategy is built on clear business alignment, strong data quality monitoring, and a focus on delivering ROI across short, mid, and long-term horizons. With the help of an observability platform, they can adapt quickly, maintain data reliability, and support strategic decision-making even in uncertain conditions.
How does Sifflet help with data freshness monitoring?
At Sifflet, we offer a powerful Freshness Monitor that tracks when your data arrives and alerts you if it's missing or delayed. Whether you're working with batch or streaming pipelines, our observability platform makes it easy to stay on top of data freshness and ensure your analytics stay accurate and timely.
Can open-source ETL tools support data observability needs?
Yes, many open-source ETL tools like Airbyte or Talend can be extended to support observability features. By integrating them with a cloud data observability platform like Sifflet, you can add layers of telemetry instrumentation, anomaly detection, and alerting. This ensures your open-source stack remains robust, reliable, and ready for scale.
How does Sifflet support data quality monitoring for large organizations?
Sifflet is built to scale. It supports automated data quality monitoring across hundreds of assets, as seen with Carrefour Links monitoring over 800 data assets in 8+ countries. With dynamic thresholding, schema change detection, and real-time metrics, Sifflet ensures SLA compliance and consistent data reliability across complex ecosystems.
How does data observability differ from traditional data quality monitoring?
Great question! Traditional data quality monitoring focuses on pre-defined rules and tests, but it often falls short when unexpected issues arise. Data observability, on the other hand, provides end-to-end visibility using telemetry instrumentation like metrics, metadata, and lineage. This makes it possible to detect anomalies in real time and troubleshoot issues faster, even in complex data environments.
Is there a way to use Sifflet with Terraform for better data governance?
Yes! Sifflet now offers an officially-supported Terraform provider that allows you to manage your observability setup as code. This includes configuring monitors and other Sifflet objects, which helps enforce data contracts, improve reproducibility, and strengthen data governance.
What’s the difference between static and dynamic freshness monitoring modes?
Great question! In static mode, Sifflet checks whether data has arrived during a specific time slot and alerts you if it hasn’t. In dynamic mode, our system learns your data arrival patterns over time and only sends alerts when something truly unexpected happens. This helps reduce alert fatigue while maintaining high standards for data quality monitoring.
Is Sifflet planning to offer native support for Airbyte in the future?
Yes, we're excited to share that a native Airbyte connector is in the works! This will make it even easier to integrate and monitor Airbyte pipelines within our observability platform. Stay tuned as we continue to enhance our capabilities around data lineage, automated root cause analysis, and pipeline resilience.
Still have questions?