


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
What role does anomaly detection play in modern data contracts?
Anomaly detection helps identify unexpected changes in data that might signal contract violations or semantic drift. By integrating predictive analytics monitoring and dynamic thresholding into your observability platform, you can catch issues before they break dashboards or compromise AI models. It’s a core feature of a resilient, intelligent metadata layer.
How does Sifflet help close the observability gap for Airbyte pipelines?
Great question! Sifflet bridges the observability gap for Airbyte by using our Declarative Lineage API and a custom Python script. This allows you to capture complete data lineage from Airbyte and ingest it into Sifflet, giving you full visibility into your pipelines and enabling better root cause analysis and data quality monitoring.
How does Sifflet support data pipeline monitoring at Carrefour?
Sifflet enables comprehensive data pipeline monitoring through features like monitoring-as-code and seamless integration with data lineage tracking and governance tools. This gives Carrefour full visibility into their pipeline health and helps ensure SLA compliance.
Will Sifflet cover any upcoming trends in data observability?
For sure! Our CEO, Salma Bakouk, will be speaking about the top data trends to watch in 2025, including how GenAI and advanced anomaly detection are shaping the future of observability platforms. You’ll walk away with actionable insights for your data strategy.
How does Sifflet support SLA compliance and proactive monitoring?
With real-time metrics and intelligent alerting, Sifflet helps ensure SLA compliance by detecting issues early and offering root cause analysis. Its proactive monitoring features, like dynamic thresholding and auto-remediation suggestions, keep your data pipelines healthy and responsive.
How can I ensure SLA compliance during data integration?
To meet SLA compliance, it's crucial to monitor ingestion latency, data freshness checks, and throughput metrics. Implementing data observability dashboards can help you track these in real time and act quickly when something goes off track. Sifflet’s observability platform helps teams stay ahead of issues and meet their data SLAs confidently.
What kind of integrations does Sifflet offer for data pipeline monitoring?
Sifflet integrates with cloud data warehouses like Snowflake, Redshift, and BigQuery, as well as tools like dbt, Airflow, Kafka, and Tableau. These integrations support comprehensive data pipeline monitoring and ensure observability tools are embedded across your entire stack.
What are the key features to look for in a data observability platform?
When evaluating an observability platform, look for strong data lineage tracking, real-time metrics collection, anomaly detection capabilities, and broad integrations across your data stack. Features like field-level lineage, ease of setup, and user-friendly dashboards can make a big difference too. At Sifflet, we believe observability should empower both technical and business users with the context they need to trust and act on data.













-p-500.png)
