Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

Can Sifflet detect anomalies in my data pipelines?
Yes, it can! Sifflet uses machine learning for anomaly detection, helping you catch unexpected changes in data volume or quality. You can even label anomalies to improve the model's accuracy over time, reducing alert fatigue and improving incident response automation.
What role does Sifflet’s Data Catalog play in data governance?
Sifflet’s Data Catalog supports data governance by surfacing labels and tags, enabling classification of data assets, and linking business glossary terms for standardized definitions. This structured approach helps maintain compliance, manage costs, and ensure sensitive data is handled responsibly.
Can SQL Table Tracer be integrated into a broader observability platform?
Absolutely! SQL Table Tracer is designed with a minimal API and modular architecture, making it easy to plug into larger observability platforms. It provides the foundational data needed for building features like data lineage tracking, pipeline health dashboards, and SLA monitoring.
What is data observability and why is it important for modern data teams?
Data observability is the practice of monitoring data as it moves through your pipelines to detect, understand, and resolve issues proactively. It’s crucial because it helps data teams ensure data reliability, improve decision-making, and reduce the time spent firefighting data issues. With the growing complexity of data systems, having a robust observability platform is key to maintaining trust in your data.
How can I monitor the health of my ETL or ELT pipelines?
Monitoring pipeline health is essential for maintaining data reliability. You can use tools that offer data pipeline monitoring features such as real-time metrics, ingestion latency tracking, and pipeline error alerting. Sifflet’s pipeline health dashboard gives you full visibility into your ETL and ELT processes, helping you catch issues early and keep your data flowing smoothly.
How can I monitor transformation errors and reduce their impact on downstream systems?
Monitoring transformation errors is key to maintaining healthy pipelines. Using a data observability platform allows you to implement real-time alerts, root cause analysis, and data validation rules. These features help catch issues early, reduce error propagation, and ensure that your analytics and business decisions are based on trustworthy data.
Can Sifflet support real-time metrics and monitoring for AI pipelines?
Absolutely! While Sifflet’s monitors are typically scheduled, you can run them on demand using our API. This means you can integrate real-time data quality checks into your AI pipelines, ensuring your models are making decisions based on the freshest and most accurate data available. It's a powerful way to keep your AI systems responsive and reliable.
What does 'observability culture' mean at Adaptavist?
For Adaptavist, observability culture means going beyond tools. It's about clear ownership of alerts, integrating data quality monitoring into sprints, and giving stakeholders ways to provide feedback directly in dashboards. They even track observability metrics to continuously improve their own observability practices.
Still have questions?