Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

Can observability platforms help AI systems make better decisions with data?
Absolutely. AI systems need more than just schemas—they need context. Observability platforms like Sifflet provide machine-readable trust signals, data freshness checks, and reliability scores through APIs. This allows autonomous agents to assess data quality in real time and make smarter decisions without relying on outdated documentation.
What is a 'Trust OS' and how does it relate to data governance?
A Trust OS is an intelligent metadata layer where data contracts are enriched with real-time observability signals. It combines lineage awareness, semantic context, and predictive validation to ensure data reliability at scale. This approach elevates data governance by embedding trust directly into the technical fabric of your data pipelines, not just documentation.
How does Flow Stopper improve data reliability for engineering teams?
By integrating real-time data quality monitoring directly into your orchestration layer, Flow Stopper gives Data Engineers the ability to stop the flow when something looks off. This means fewer broken pipelines, better SLA compliance, and more time spent on innovation instead of firefighting.
What’s new with the Distribution Change monitor and how does it improve anomaly detection?
The upgraded Distribution Change monitor now focuses on tracking volume shifts between specific categories, like product lines or customer segments. This makes anomaly detection more precise by reducing noise and highlighting only the changes that truly matter. It's a smarter way to stay on top of data drift and ensure your metrics reflect reality.
What makes Etam’s data strategy resilient in a fast-changing retail landscape?
Etam’s data strategy is built on clear business alignment, strong data quality monitoring, and a focus on delivering ROI across short, mid, and long-term horizons. With the help of an observability platform, they can adapt quickly, maintain data reliability, and support strategic decision-making even in uncertain conditions.
What benefits did jobvalley experience from using Sifflet’s data observability platform?
By using Sifflet’s data observability platform, jobvalley improved data reliability, streamlined data discovery, and enhanced collaboration across teams. These improvements supported better decision-making and helped the company maintain a strong competitive edge in the HR tech space.
What is the Universal Connector and how does it support data pipeline monitoring?
The Universal Connector lets you integrate Sifflet with any tool in your stack using YAML and API endpoints. It enables full-stack data pipeline monitoring and data lineage tracking, even for tools Sifflet doesn’t natively support, offering a more complete view of your observability workflows.
How did jobvalley improve data visibility across their teams?
jobvalley enhanced data visibility by implementing Sifflet’s observability platform, which included a powerful data catalog. This centralized hub made it easier for teams to discover and access the data they needed, fostering better collaboration and transparency across departments.
Still have questions?